
 

 
 

BMBF funding measure GRoW – Water as a global resource 
 

 

Ein globalskaliges Werkzeug zur Charakterisierung von Dürren 
und Quantifizierung ihrer Wirkungen auf Wasserressourcen 

(GlobeDrought) 

 

A global-scale tool for characterising droughts and quantifying 
their impact on water resources (GlobeDrought) 

 

 
 

 

 
Schlussbericht 

 
 
Projektkoordination 

 
Prof. Dr. Stefan Siebert 
Department für Nutzpflanzenwissenschaften der Georg-
August-Universität Göttingen 
 

Projektlaufzeit 01.08.2017 – 31.12.2020 
 

Förderkennzeichen 02WGR1457A bis F 
 

 



 

   
 

 

FKZ 
02WGR1457A 

Rheinische Friedrich Wilhelms 
Universität Bonn 

 

Institut für Geodesie und 
Geoinformation 

Prof. Dr. Jürgen Kusche 
(Projektleitung) 

 

Zentrum für Fernerkundung der 
Landoberfläche 

PD Dr. Olena Dubovyk 

 

FKZ 
02WGR1457B 

Johann Wolfgang Goethe-Universität 
Frankfurt am Main 

Institut für Physische Geographie 
Prof. Dr. Petra Döll (Projektleitung)  

FKZ 
02WGR1457C 

Universität der Vereinten Nationen 
Institut für Umwelt und menschliche 

Sicherheit 
Dr. Michael Hagenlocher 

(Projektleitung)  

FKZ 
02WGR1457D 

Remote sensing Solutions GmbH 
Dr. Jonas Franke (Projektleitung) 

 

FKZ 
02WGR1457E 

Welthungerhilfe 
Daniel Rupp (Projektleitung) 

 

FKZ 
02WGR1457F 

Georg-August-Universität Göttingen 
Institut für 

Nutzpflanzenwissenschaften 
Prof. Dr. Stefan Siebert 

(Projektleitung) 
 

 
 
 
Das diesem Bericht zugrundeliegende Vorhaben wurde mit Mitteln des Bundesministeriums für 
Bildung und Forschung unter dem Förderkennzeichen 02WGR1457A-F gefördert. Die Verantwortung 
für den Inhalt dieser Veröffentlichung liegt bei den Autoren.  

 
Gemeinsamer Schlussbericht der Teilvorhaben 

 



 

   
 

Berichtsblatt 
1. ISBN oder ISSN 
 

2. Berichtsart (Schlussbericht oder Veröffentlichung) 
Schlussbericht 

3. Titel 
Ein globalskaliges Werkzeug zur Charakterisierung von Dürren und Quantifizierung ihrer Wirkungen auf Wasserressourcen 
(GlobeDrought) 
 
4. Autor(en) [Name(n), Vorname(n)] 
Siebert, Stefan; Nouri, Hamideh; Eyshi Rezaei, Ehsan; Kusche, Jürgen; Dubovyk, 
Olena; Döll, Petra; Herbert, Claudia; Hagenlocher, Michael; Franke, Jonas; Rupp, 
Daniel 

5. Abschlussdatum des Vorhabens 
31.12.2020 

6. Veröffentlichungsdatum 
01.11.2021 

7. Form der Publikation 
Elektronisches Dokument 

8. Durchführende Institution(en) (Name, Adresse) 
Universität Göttingen, DNPW, Von-Siebold-Str. 8, 37075 Göttingen 
Universität Bonn, IGG, Nussallee 17, 53115 Bonn 
Universität Bonn, ZfL, Genscherallee 3, 53113 Bonn 
Universität Frankfurt am Main, IPG, Altenhöferallee 1, 60438 Frankfurt am Main 
Universität der Vereinten Nationen, EHS, Platz der Vereinten Nationen 1, 53113 Bonn 
Remote Sensing Solutions GmbH, Dingolfinger Str. 9, 81673 München 
Deutsche Welthungerhilfe e. V., Friedrich-Ebert-Str. 1, 53173 Bonn 

9. Ber. Nr. Durchführende Institution 
 

10. Förderkennzeichen  
02WGR1457A – 02WGR1457F 

11. Seitenzahl 
154 

12. Fördernde Institution (Name, Adresse) 
 
Bundesministerium für  
Bildung und Forschung (BMBF) 
53170 Bonn 
 

13. Literaturangaben 
104 

14. Tabellen 
2 

15. Abbildungen 
44 + Anhang 

16. Zusätzliche Angaben 
 
17. Vorgelegt bei (Titel, Ort, Datum) 
 
18. Kurzfassung 
Im Rahmen des Projektes erfolgte eine räumlich explizite Beschreibung von Dürrerisiken durch Betrachtung der Komponenten 
Dürregefahr, Exposition und Verwundbarkeit für landwirtschaftliche Systeme sowie die Wasserversorgung. Die gewonnenen 
Informationen wurden auf globaler Ebene sowie für die Projektregion südliches Afrika (Südafrika, Zimbabwe) in einem 
Dürreinformationssystem verfügbar gemacht. 

Die Verknüpfung von satelliten-gestützter Fernerkundung mit hydrologischer Modellierung und Ertragsmodellierung sowie mit der 
Analyse von Niederschlagsdaten führte zu hochaufgelösten Indikatoren für meteorologische, hydrologische und agronomische 
Dürregefahren. Die Exposition von Anbaukulturen im Bewässerungs- und Regenfeldbau wurde separat berücksichtigt. Treiber, 
räumliche Muster sowie Dynamiken von Verwundbarkeit der betrachteten Sektoren gegenüber Dürren wurden analysiert. Dazu 
wurden systematische Erhebungen unter Experten weltweit zu Verwundbarkeitsindikatoren sowie deren Gewichtung 
durchgeführt. Die Ergebnisse der Dürrerisikoanalyse wurden durch Vergleich mit Informationen zu bekannten Dürrewirkungen 
(z.B. Ertragsausfälle, monetäre Verluste, Beeinträchtigung der Versorgung mit Trinkwasser und Nahrungsmitteln) aus globalen 
und regionalen Datenbanken validiert. Zudem wurden zwei Validierungsworkshops mit globalen und regionalen Anwendern 
durchgeführt. 

Die im Projekt gewonnenen Daten und Erkenntnisse sind bereits in externe Informationssysteme eingeflossen, z.B. in das Global 
Drought Observatory (GDO) des Joint Research Centers der Europäischen Kommission in Ispra, dass Politiker, 
Entscheidungsträger sowie die Bevölkerung in Europa über Dürrerisiken informiert. Um die Verbreitung von Methoden und Daten 
zu fördern, erfolgte die Veröffentlichung wesentlicher Ergebnisse in Fachzeitschriften unter Einbeziehung ausgewählter regionaler 
sowie globaler Partner. Gemeinsam mit Forscher(innen) aus dem SaWaM-Projektverbund wurde ein Konzept zur saisonalen 
Dürrevorhersage basierend auf Bias-korrigierten Ensemblevorhersagen entwickelt und durch Verknüpfung globaler Modelle mit 
globaler Klimadatenprozessierung erfolgreich demonstriert. 

19. Schlagwörter 
Dürregefahren, Verwundbarkeit, Dürrerisiko, Landwirtschaft, Wasserversorgung, Globale Analyse, Südafrika, Zimbabwe, Indien, 
USA, Modellierung, Fernerkundung, Risikoanalyse, Informationssystem 

20. Verlag 21. Preis 

 
  



 

   
 

Document Control Sheet 

1. ISBN or ISSN 
 

2. type of document (e.g. report, publication) 
Final report 

3. title 
A global-scale tool for characterising droughts and quantifying their impact on water resources (GlobeDrought) 

4. author(s) (family name, first name(s)) 
Siebert, Stefan; Nouri, Hamideh; Eyshi Rezaei, Ehsan; Kusche, Jürgen; Dubovyk, 
Olena; Döll, Petra; Herbert, Claudia; Hagenlocher, Michael; Franke, Jonas; Rupp, 
Daniel 

5. end of project 
31.12.2020 

6. publication date 
01.11.2021 

7. form of publication 
Online publication 

8. performing organization(s) (name, address) 
University of Göttingen, DNPW, Von-Siebold-Str. 8, 37075 Göttingen 
University of Bonn, IGG, Nussallee 17, 53115 Bonn 
University of Bonn, ZfL, Genscherallee 3, 53113 Bonn 
University of Frankfurt am Main, IPG, Altenhöferallee 1, 60438 Frankfurt am Main 
University of the United Nations, EHS, Platz der Vereinten Nationen 1, 53113 Bonn 
Remote Sen sing Solutions GmbH, Dingolfinger Str. 9, 81673 München 
Deutsche Welthungerhilfe e. V., Friedrich-Ebert-Str. 1, 53173 Bonn 

9. originator’s report no. 
 

10. reference no. 
02WGR1457A – 02WGR1457F 

11. no. of pages 
154 

12. sponsoring agency (name, address) 
 
Bundesministerium für 
Bildung und Forschung (BMBF) 
53170 Bonn 
 

13. no. of references 
104 

14. no. of tables 
2 

15. no. of figures 
44 + Appendix 

16. supplementary notes 
 
17. presented at (title, place, date) 
 
18. abstract 
The project performed a spatial analysis of drought risks by integrating the components drought hazard, exposure and 
vulnerability for irrigated and rainfed agricultural systems and the water supply sector. The results of a global analysis and more 
detailed regional assessments for South Africa and Zimbabwe have been made available to the public in a drought information 
system. 

Indicators for meteorological, hydrological and agronomic drought hazards were obtained at high spatial resolution by combining 
satellite remote sensing, precipitation data analysis and hydrological and crop modeling. The exposure of irrigated and rainfed 
crops was explicitely considered. To analyze drivers, spatial patterns and temporal dynamics of drought vulnerability, expert 
surveys were performed systematically resulting in vulnerability indicators and their weights for the sectors considered in the 
project. The results of the drought risk analysis were validated by comparing computed drought hazard and exposure to drought 
impacts such as yield losses, economic losses or the number of affected people reported in global and regional data bases. In 
addition, two validation workshops were organized with participation of global and regional stakeholders. 

The information and data sets developed by the project groups have already been used by external scientists, for example by the 
Global Drought Observatory of the Joint Research Centre of the Uropean Commission to inform policy makers and citizens across 
Europe about current drought risk. To facilitate knowledge dissemination and reuse of our products, several scientific articles were 
published together with regional and global end users of our products. A concept for a global drought forecasting system based on 
bias-corrected seasonal ensemble weather forecasts was developed together with researchers from the SaWaM-project and 
demonstrated successfully. 

19. keywords 
Drought hazard, vulnerability, drought risk, crop production, water supply, global assessment, South Africa, Zimbabwe, India, 
USA, modeling, remote sensing, risk analysis, information system 

20. publisher 21. price 
 

 
  



 

   
 

Authors / project members 
 

Authors (bold) / project 
members 

Institution  

Prof. Dr. Jürgen Kusche 
Helena Gerdener 
Dr. Olga Engels 

University of Bonn,  
Institute of Geodesy and 

Geoinformation,  
Nussallee 17, 53115 Bonn 

 
 

 

 
PD Dr. Olena Dubovyk 
Dr. Valerie Graw 
Dr. Gohar Ghazaryan 
Dr. Javier Gonzales 
Simon König 

University of Bonn,  
ZfL,  

Genscherallee 3, 53113 Bonn  

 
Prof. Dr. Petra Döll 
Claudia Herbert 
Eklavyya Popat 

University of Frankfurt, 
Institute of Physical Geography 

Altenhöferallee 1, 60438 Frankfurt 
am Main  

Dr. Michael Hagenlocher 
Isabel Meza 
Dr. Erick Tambo 
Annika Min 
Dr. Emmanuel Cheo 
Dr. Zita Sebesvari 
Zeinab El Maadawi 
Yannick Urs Schillinger 
Dr. Yvonne Walz 

University of the United Nations, 
Institute for Environmental and 

Human Security,  
Platz der Vereinten Nationen 1, 

53113 Bonn  

Dr. Jonas Franke 
Dr. Tobias Landmann 
Natalie Cornish 
Maximilian Schwarz 

Remote Sensing Solutions GmbH, 
Dingolfinger Str. 9, 81673 München 

 
Daniel Rupp 
Dr. Heinz Peters 
Katharina Wietler 
Jasmin Koottummel 

Deutsche Welthungerhilfe e. V., 
Friedrich-Ebert-Str. 1, 53173 Bonn 

 
Prof. Dr. Stefan Siebert 
Dr. Hamideh Nouri 
Dr. Ehsan Eyshi Rezaei 
Malte Weller 
Anja Wrobel 

University of Göttingen,  
Department of Crop Sciences,  

Von-Siebold-Str. 8, 37075 Göttingen 

 

 



  Schlussbericht - Zusammenfassung 

   
 

 
Zusammenfassung 

Aufgabenstellung 
Ziel des Gesamtvorhabens GlobeDrought  war die stakeholder-unterstützte 
Entwicklung eines Informationssystems zur umfassenden Charakterisierung von 
Dürreereignissen und ihrer Auswirkungen auf Wasserressourcen, die Produktivität 
im Pflanzenbau, den Handel mit Nahrungsmitteln, die Ernährungssicherheit und den 
Bedarf an internationaler Nahrungsmittelhilfe. Analysen sollten auf globaler Skala 
sowie, mit höherem Detail, für besonders von Dürren betroffene Regionen 
durchgeführt werden und dabei sowohl das historische Dürrerisiko umfassen, als 
auch den aktuellen Dürrezustand. In Zusammenarbeit mit dem GRoW-Projekt 
SaWaM sollte zudem die Eignung von 7-monatigen, globalen, bias-korrigierten 
ECMWF-Wettervorhersagen für die Dürreprojektion getestet werden. 
 
Voraussetzungen unter denen das Projekt durchgeführt wurde 
Der Stand der Forschung zu Beginn des Vorhabens war dass 
Dürreinformationssysteme entweder Fernerkundungsinformationen und 
Niederschlagsdaten basierten während Pflanzenwachstumsmodellierung und 
hydrologische Modellierung selten zum Einsatz kamen. Ansätze aus der 
Fernerkundung haben dabei den Vorteil einer hohen räumlichen Auflösung aber den 
Nachteil von nur relativ kurzen verfügbaren Zeitreihen. Modelle zur Berechnung von 
Indikatoren für hydrologische oder agronomische Dürren  können lange Zeiträume 
abdecken und sehr detailliert sogar Kulturarten unterscheiden, verfügen aber 
üblicherweise über eine geringe räumliche Auflösung. In den meisten Fällen 
beschränkten sich verfügbare Dürreinformationssysteme auf Dürregefahren, 
während eine Integration von Informationen zu Exposition und Verwundbarkeiten 
zum Dürrerisiko selten durchgeführt wurde.   
 
Ablauf des Vorhabens 
Zu Beginn des Projektes wurde in Zusammenarbeit mit allen Partnern und unter 
Beteiligung der Stakeholder zunächst die Projektregionen ausgewählt und ein 
Konzept zur Abbildung von Dürregefahren, Dürreexposition, Verwundbarkeit sowie 
der Integration zum Dürrerisiko einschließlich der dafür nötigen Indikatoren 
entwickelt sowie Bestandteile des zu entwickelnden Dürreinformationssystems 
definiert. Grundlage bildete eine umfangreiche Literaturstudie zum gegenwärtigen 
Stand des Wissens in der Dürrerisikoanalyse. Auf einem Projektworkshop wurden im 
Co-Designprozess mit den regionalen Partnern die zu untersuchenden Sektoren 
(Bewässerungs- und Regenfeldbau, Wasserversorhgung) definiert. Dürregefahren 
wurden analysiert, in dem prozessbasierte Modelle (WGHM, GCWM, Simplace) mit 
Fernerkundungsinformationen kombiniert wurden. So konnten Speicheränderungen 
im globalen hydrologischen Modell WGHM durch Assimilation von 
Speicheränderungen aus GRACE-Schwerefelddaten angepasst werden. Daten 
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optischer Fernerkundungssensoren zur Vegetationsaktivität und Evapotranspiration 
wurden genutzt um Aussat und Erntetermine in Pflanzenwachstumsmodellen 
anzupassen, Bewässerungs- und Regenfeldbau zu unterscheiden und modellierte 
Evapotranspiration zu validieren. Informationen zu geeigneten Indikatoren zur 
Verwundbarkeiten der untersuchten Sektoren sowie zur Gewichtung der Indikatoren 
wurden durch Auswertung systematischer Expertenbefragungen gewonnen. 
Informationen zu Dürregefahren, Exposition und Verwundbarkeit wurden schliesslich 
zum Dürrerisiko integriert. Solche integrierten Dürreriskoanalysen wurden mit 
globaler Abdeckung sowie für die Projektregionen Simbabwe und Südafrika 
publiziert. Einzelne regionale Studien deckten auch das Missouri-Einzugsgebiet in 
den USA sowie Teile Indiens ab. Die wesentlichen Ergebnisse des Projektes werden 
im GlobeDrought – Dürreinformationssystem dargestellt. Schliesslich wurde in 
Zusammenarbeit mit dem GRoW-Projekt SaWaM (Prof. Kunstmann, KIT, Campus 
Alpin) eine Prozesskette zur Generierung saisonaler Dürrevorhersagen entwickelt 
und am Beispiel des Jahres 2018 getestet und demonstriert. 
 
Ergebnisse und Zusammenarbeit mit anderen Forschungseinrichtungen 
Es wurde gezeigt dass Dürregefahren räumlich und zeitlich stark variieren, weshalb 
die Abbildung in hoher raumzeitlicher Auflösung nötig ist. Auf Grund von großen 
Unterschieden in der Verwundbarkeit der Systeme können ähnliche Dürregefahren 
zu stark unterschiedlichem Dürrerisiko führen. Somit spielt die Verringerung der 
Verwundbarkeit eine entscheidende Rolle beim Dürremanagement mit dem Ziel der 
Beschränkung der Dürrewirkungen. Es wurde gezeigt dass die entwickelten Modelle 
und Indikatoren generell die in Datenbanken berichteten Dürrewirkungen auf die 
Produktion landwirtschaftlicher Güter sowie die Wasserversorgung sehr gut abbilden 
können. Für den Zeitraum mit Datenverfügbarkeit konnte auch eine hohe Konsistenz 
von Modellergebnissen mit Daten der Fernerkundung sowohl regional als auch 
global belegt werden. Die Ergebnisse der experimentellen, 7-monatigen 
Dürrevorhersage zeigten deutliche Unterschiede in der Qualität der Vorhersagen für 
das Jahr 2018 mit überwiegend guten Prognosen für die Südhalbkugel sowie 
Südeuropa. Demgegenüber wurde die starke Dürre in Mittel- und Osteuropa nicht 
gut vorhergesagt.  
 
Die Projektgruppen betrieben während der Lauzeit des Projektes eine intensive 
Zusammenarbeit untereinander sowie mit potentiellen Nutzern der globalen oder 
regionalen Produkte. Dies ist auch durch zahlreiche gemeinsame Publikationen 
dokumentiert. Neben vier großen Projektworkshops wurden auch kleinere Treffen 
mit den Nutzern der regionalen oder globalen Produkte und Daten organisiert. 
Inhaltliche Erkenntnisse sowie methodische Grundlagen wurden auch durch 12 
Webinare und Online-Kurse unter Mitwirkung aller Projektpartner an eine breite 
Öffentlichkeit kommuniziert. Die Projektgruppen beteiligten sich intensiv an 
Querschnittsaktivitäten im GRoW-Verbund und präsentierten Konzepte und 
Ergebnisse auf den gemeinsamen Tagungen und Workshops.  
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Abstract 
The project performed a spatial analysis of drought risks by integrating the 
components drought hazard, exposure and vulnerability for irrigated and rainfed 
agricultural systems and the water supply sector. The results of a global analysis and 
more detailed regional assessments for South Africa and Zimbabwe have been 
made available to the public in a drought information system. 

Indicators for meteorological, hydrological and agronomic drought hazards were 
obtained at high spatial resolution by combining satellite remote sensing, 
precipitation data analysis and hydrological and crop modeling. Methods were 
developed to assimilate remote sensing data obtained by the Gravity Recovery and 
Climate Experiment (GRACE) into the global hydrological model WaterGAP and to 
combine remote sensing and crop model based drought hazard and drought impact 
assessments. The exposure of irrigated and rainfed crops was explicitely 
considered. To analyze drivers, spatial patterns and temporal dynamics of drought 
vulnerability, expert surveys were performed systematically resulting in vulnerability 
indicators and their weights for the sectors considered in the project.  

The results of the drought risk analysis were validated by comparing computed 
drought hazard and exposure to drought impacts such as yield losses, economic 
losses or the number of affected people reported in global and regional data bases. 
In addition, two validation workshops were organized with participation of global and 
regional stakeholders. 

The information and data sets developed by the project groups have already been 
used by external scientists, for example by the Global Drought Observatory of the 
Joint Research Centre of the Uropean Commission to inform policy makers and 
citizens across Europe about current drought risk. To facilitate knowledge 
dissemination and reuse of our products, several scientific articles were published 
together with regional and global end users of our products. 12 online courses 
consisting of webinars and electronic lectures were developed and integrated into 
the GlobeDrought Learning Platform. These courses describe drought impacts and 
introduce into drought risk analysis. By the end of the project, more than 600 people 
had signed up to the platform. 

GlobeDrought researchers contributed to cross-cutting activities bringing together 
the scientists of the 12 research projects funded by the measure Global Resource 
Water (GRoW) targeting on the improvement of the water footprint concept, 
providing recommendations on how to achieve the Sustainable Development Goals 
(SDGs) and on policy advice to improve water resource management. A concept for 
a global drought forecasting system based on bias-corrected seasonal ensemble 
weather forecasts was developed and presented at the GRoW final workshop 
together with researchers from the GRoW SaWaM-project.  

  

http://map3d.remote-sensing-solutions.de/globedrought/GlobeDroughtPortal/
https://elearning.grow-globedrought.net/
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Introduction 
Droughts exceed all other natural hazards in terms of the number of people affected 
(FAO, 2018). It has been estimated that since 1900 more than 11 million people 
have died as a consequence of drought and more than 2 billion have been affected 
by drought (FAO, 2013).  

Drought generally refers to a lack of water compared to normal conditions (Van Loon 
et al., 2016) and this lack can be detected as decline of the water volume in storage 
components (soil, aquifers, rivers, lakes, reservoirs) or as decline in the fluxes 
between storages (rainfall, evapotranspiration, runoff, river discharge). Depending on 
the total storage capacity and the dynamics of fluxes in- and out of the storages, 
drought dynamics can be very different with relatively fast responses in soil and 
atmosphere and relatively slow changes in aquifers. Therefore, analysis of drought 
has to consider distinct time scales, that are relevant for the processes and 
components considered. Drought analysis also needs to be spatially explicit because 
major water fluxes such as rainfall and evapotranspiration are very heterogeneously 
so that, at larger extent, regions with drought coincide with wet conditions elsewhere. 
To describe the present drought status it is therefore needed to monitor the changes 
in the hydrological cycle for long time periods with time steps reflecting the dynamics 
of the processes and storages studied and with a spatial resolution reflecting their 
heterogeneity. 

Because of the diversity in storages and fluxes potentially affected by drought, major 
direct and indirect impacts on human and natural systems and their properties, 
including terrestrial and freshwater ecosystems, agricultural systems, public health, 
water supply, water quality, food security, energy, or economy have been reported. 
Drought impacts can hardly be generalized across sectors and affected systems 
because distinct storages and fluxes are considered relevant. While soil moisture is 
in particular rlevent for agriculture and terrestrial ecosystems, reservoir storage and 
river temperature is more relevant for energy production while drinking water supply 
is mainly affected by groundwater levels and reservoir storage. 

Agriculture (crops, livestock, fisheries, aquaculture, and forestry) absorbed 23 
percent of all damage and loss caused by medium- to large-scale natural disasters in 
period 2006-2016. Drought affects the agriculture sector disproportionately, 83 
percent of all damage and loss caused by drought was absorbed by agriculture 
(FAO, 2018). Consequently, studying drought impacts on agricultural systems can 
be considered extremely relevant.  

Drought events and associated hazard are characterized in terms of their frequency, 
severity, duration, and extent (Zargar et al.,  2011). However, drought impacts 
depend not only on the severity and duration of the hazard but also on the coping 
and adaptive capacity of the system or sector affected. For example, a local soil 
moisture drought may have considerable impact on the food supply of subsistence 
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farmers in developing countries while it will hardly affect food availability of people 
living in developed countries characterized by integration into domestic and 
international trade and efficient transport and storage infrastructure. Today it is 
widely acknowledged that drought risk, i.e. the likelihood of adverse impacts or 
consequences, is not driven only by drought hazard but results from the interaction 
of hazard, exposure, and vulnerability (IPCC 2012, 2014).  

The complexity of processes affected by drought and the differences in their spatial 
and temporal characteristics resulted in a large number of different methods and 
approaches to monitor the drought status and to analyse drought risks. Networks of 
sensors performing direct measurments of relevant water fluxes or storages such as 
soil moisture sensors, automated weather stations, eddy covariance flux towers or 
river gauges are mainly used for monitoring. Indirect measurements performed by 
remote sensing inform about vegetation and land surface properties, moisture 
content of the topsoil, water levels in reservoirs and major rivers or changes in the 
earth gravity field. This information is used for drought monitoring but also to detect 
drought impacts. Process based hydrological or crop models can be applied for long 
time periods and also for scenario based projection and are mainly used to quantify 
drought hazard and to integrate specific changes in water storages and water fluxes 
to describe the response of complex systems such as river networks or crop 
production systems. Information from sensing and modeling is then transformed to 
indicators describing the drought status of a system at a specific time and location 
compared to the status expected based on long-term time series of the measured or 
modeled data. Numerous drought information systems have been developed for 
specific sectors and regions informing inhabitants, politicians and decision makers. 
Most of the present information systems are designed to inform a specific sector, are 
either based on sensing or on modeling and miss integration of drought vulnerability 
information. Therefore, they mainly inform about drought hazards or indicate drought 
risk for specific regions where it can be assumed that vulnerability is homogenous 
and does not change much in time. 

Objectives of the project GlobeDrought, funded by the German Ministry of Education 
and Research under the funding measure Water as a Global Resource (GRoW) 
were (i) to perform a spatial analysis of drought risks by integrating the components 
drought hazard, exposure and vulnerability for irrigated and rainfed agricultural 
systems and the water supply sector at global scale and for specific, heavily affected 
regions, (ii) to analyze drought impacts and (iii) to develop a drought information 
system providing access to the information created in the project and supporting 
thereby drought risk management.  

The GlobeDrought project was coordinated by the Division Agronomy at the 
Department of Crop Sciences, University of Göttingen (UG). UG was also 
responsible for the hazard analysis of rainfed and irrigated agricultural systems using 
regional and global crop water models.  

https://bmbf-grow.de/en
https://www.uni-goettingen.de/agronomy
https://www.uni-goettingen.de/agronomy
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The Astronomical, Physical and Mathematical Geodesy Group at the Institute of 
Geodesy and Geoinformation, University of Bonn (UB-IGG) processed GRACE 
satellite data to derive total water storage changes at global scale and developed 
methods to assimilate these data into the global hydrological model WaterGAP to 
analyze hydrological droughts. UB-IGG also developed drought indicators directly 
based on total water storage change and performed analyses of meteorological 
drought using indicators such as SPI.  

The Center for Remote Sensing of Land Surfaces at the University of Bonn (UB-ZFL) 
contributed to the project by using optical remote sensing to derive drought impacts 
on the vegetation, in particular agricultural crops. UB-ZFL performed analyses at 
global scale and for the regions South Africa and Zimbabwe. In addition, methods 
were tested to link remote sensing based drought indicators to process based crop 
models and to improve essential input data uased by the model, such as sowing 
dates of agricultural crops.  

The Hydrology Group at the Institute of Physical Geography, University of Frankfurt 
am Main (UF) developed methods to analyze hydrological drought based on 
simulation results of the global hydrological model WaterGAP. The indicators and 
data developed at UF were in particular relevant to study drought hazard for water 
supply and irrigated agricultural systems. UF contributed to global scale 
assessments and to regional assessments for South Africa. In addition, methods 
were developed to couple the hydrological model WaterGAP with the crop model 
SIMPLACE and to use total water storage changes from GRACE for improving 
streamflow simulation results of WaterGAP. 

The Institute for Environmental and Human Security at the University of the United 
Nations (UNU-EHS) developed methods to analyze the vulnerability of the sectors 
studied to drought and performed the integration of indicators for hazard, exposure 
and vulnerability to analyze drought risk. UNU-EHS performed studies at global and 
regional level and supported the coordination of the project by organizing the project 
and stakeholder workshops. In addition, UNU-EHS developed and maintained the 
project website and developed the electronic courses in collaboration with all project 
partners. 

Remote Sensing Solutions GmbH (RSS) developed the GlobeDrought information 
system providing access to the data developed in the project. RSS developed 
methods to distinguish irrigated and rainfed agricultural systems based on remote 
sensing imagery and applied these methods for Zimbabwe and South Africa to 
support the regional drought risk assessments performed in the project. In addition, 
RSS performed a drought risk assessment using high resolution remote sensing 
data for the project regions. 

Deutsche Welthungerhilfe e.V. (WHH) contributed considerably to the stakeholder 
involvement and evaluated the GlobeDrought products and results from the 

https://www.apmg.uni-bonn.de/en/groups/apmg/home
https://www.apmg.uni-bonn.de/en/groups/apmg/home
https://www.zfl.uni-bonn.de/
https://www.uni-frankfurt.de/45217668/AG_Hydrologie__Hydrology_Group
https://www.uni-frankfurt.de/45217668/AG_Hydrologie__Hydrology_Group
https://ehs.unu.edu/
https://ehs.unu.edu/
https://www.remote-sensing-solutions.com/
https://www.welthungerhilfe.de/
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perspective of a potential user. WHH considerably contributed to the regional case 
studies, in particular to the drought risk analyses for Zimbabwe and acted as the link 
to other NGOs involved in humanitarian aid such as the Start network. 

  

https://startnetwork.org/
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1 Development of tools and methods for drought risk analysis 

1.1 Defining the system to be studied 

Numerous meteorological, hydrological, and agricultural drought indicators have 
been introduced to assess the physical characteristics of drought impacts or operate 
a drought early warning system throughout the years. Over 150 different drought 
indices convey the variety of definition, perception, spatial extension and application 
of drought indicators (Niemeyer, 2008; Rojas, 2018; Sánchez et al., 2018; Tian et al., 
2018; Zhao et al., 2017). However, most of these indicators are spatially limited to 
regional or national extents; very few apply to the global scale while mainly address 
meteorological or hydrological drought. In this research, our definition of drought is a 
temporary recurrent climatic feature of abnormal dry weather, long enough to cause 
a significant impact on the sector to be studied. Drought should be appropriately 
differentiated from aridity, which refers to long-term moisture deficiency and dryness 
when the water demand is continuously larger than water supply (Scheff, 2019; 
Sohoulande Djebou, 2017; Vicente-Serrano et al., 2010).  

Recent severe droughts in southeastern Brazil (2014–2017), California (2011–2017), 
the Caribbean (2013–2016), northern China (2010–2011), Europe (2011, 2015, 
2018), India (2016, 2019), the Horn of Africa (2011–2012), South Africa (2015–2016, 
2018) and Vietnam (2016) have clearly shown that the risk of negative impacts 
associated with droughts is not only linked to the severity, frequency and duration of 
drought events but also to the degree of exposure, susceptibility and lack of coping 
capacity of a given socioecological system (SES). To improve the monitoring, 
assessment, understanding and ultimately proactive management of drought risk 
effectively, we need to acknowledge that the root causes, patterns and dynamics of 
exposure and vulnerability need to be considered alongside climate variability in an 
integrated manner (Meza et al., 2020). 

To comprehend and define the effect of drought events on the agricultural sector 
and, in a broader vision, the food security of nations and potential needs for 
international food aid, we developed, for the first time, an integrated drought risk 
assessment approach. Our integrated drought risk assessment approach brings 
together data from different sources, for different sectors or impacts and disciplines. 
This information is systematically structured into the components hazard, exposure 
and vulnerability and then integrated to analyse drought risk (Figure 1). The spatio-
temporal variability in drought risk at global and regional extent helps us to identify 
leverage points for reducing impacts and properly anticipate, adapt and move 
towards resilient agricultural and water supply systems. Drought risk is defined as 
the propability or likelihood for a specific drought impact. Hazard is a deviation of the 
situation in a specific year or month  
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DROUGHT RISK INDEX = HAZARD×EXPOSURE×VULNERABILITY 

Figure 1. An integrated assessment of drought risk 

from the long-term mean. Exposure refers to the elements located in areas that 
could be adversely affected by drought hazard. Vulnerability refers to the 
predisposition to be adversely affected due to the sensitivity or susceptibility of a 
system and its elements to harm, coupled with a lack of coping and adaptive 
capacity. The overall workflow of the drought risk assessment, integrating hazard, 
exposure and vulnerability to risk is described in detail in section 1.8. 

1.2 Defining drought impacts to be studied 

Before drought indicators for hazard, exposure and vulnerability can be selected, it is 
required to define the drought impacts or sectors that will be studied. The selection 
of drought impacts to be studied in GlobeDrought was performed at the 1st 
stakeholder workshop (May 03-04, 2018 at UNU in Bonn) as an element of the co-
design process. Based on the priority ranking conducted by the participants from the 
regional case study areas NE Brazil, W India, Missouri basin, South Africa and 
Zimbabwe (Figure 2), drought impacts on agricultural systems and water supply 
were considered most relevant and selected for further study in GlobeDrought. 
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Figure 2. Participants of the 1st GlobeDrought stakeholder workshop (top) and 
ranking of drought impacts performed by the participants for selected potential case 
study regions (buttom) 

1.3  Linking of hydrological and crop models 

The global hydrological model WaterGAP (Müller Schmied et al., 2021) and the crop 
models GCWM (Siebert and Döll, 2010) and Simplace (Eyshi Rezaei et al., 2021) 
were applied in GlobeDrought to study the impact of drought on the water supply 
sector and on agricultural systems including food supply. Drought risk on water 
supply is usually investigated by monitoring changes in water storages such as 
reservoirs or aquifers determining the water availability. Hydrological models such as 
WaterGAP are designed to quantify these water storages and their changes. 
Drought impacts on agricultural systems are mainly induced by constraints in crop 
water supply resulting in reduced crop productivity. The underlying physiological 
relationship is the linear response of biomass production to crop transpiration. The 
models GCWM and Simplace are perfect tools to assess the relationship between 
actual evapotranspiration (AET) of specific crops and their potential 
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evapotranspiration (PET)  and thus between crop water use and crop water 
requirement. Consequently they reproduce the basic response of crops to drought 
and using this relationship for assessing drought hazard is advancing previous 
research which was mainly based on indirect indicators such as anomalies in 
precipitation or soil moisture. For some drought impacts it is also useful to link 
hdrological and crop models. In irrigated agriculture, for example, farmers can 
ensure crop water supply independently of precipitation as long as enough irrigation 
water is available. Consequently, it is needed to combine the modeling of water 
availability (hydrological models) with the modeling of crop water requirements (crop 
models) to investigate drought impacts on irrigated crop production. In 
GlobeDrought, two different approaches were tested for this purpose. A direct 
coupling of WaterGAP with SIMPLACE was tested in a regional assessment 
considering one specific crop (maize). In this approach, described in section 1.3.1, 
there is a direct exchange of information between the two models throughout the 
simulations. Alternatively, a soft link between WaterGAP and GCWM was tested by 
using the output of the models generated by independent simulations for calculation 
drought hazard (section 1.3.2). 

1.3.1 Concept of coupling WaterGAP and SIMPLACE 

The impact of meteorological drought on crop production can be alleviated by 
irrigation but only if sufficient water is available from either groundwater or surface 
water bodies. Thus, a crop model is required to simulate crop water requirement as a 
function of crop, soil, climate and water application by irrigation, while a hydrological 
model is required to simulated water availability from streamflow and groundwater. 
To take into account limited water supply for irrigation, which can be expected to be 
particularly limited during drought events, it is necessary to couple a crop model to a 
hydrological model that also simulated runoff from non-cropland as well as 
groundwater storage and streamflow as affected by non-irrigation water use. 
Examples of coupling crop growth and hydrologic models include Bithell and 
Brasington (2009) and Boegh et al. (2004). 

The objective of coupling the crop yield model SIMPLACE and the global 
hydrological model WaterGAP was 1) to improve the computation of hydrological 
drought hazard indicators and 2) to provide water availability data for irrigation to 
SIMPLACE such that in SIMPLACE the impact of the availability of blue water on 
yield decreases of irrigated crops could be taken into account. In an uncoupled run, 
SIMPLACE is presumed to underestimate the impacts of drought on crop yield for 
irrigated crops and WaterGAP would have some differences in the values of 
available streamflow for irrigation when compared to observed data.  

For a coupled approach, vegetation land cover of croplands is identified in 
WaterGAP’s 0.5° grid cells via up-scaled spatial resolution input from SIMPLACE. 
The temporal resolution of both models is kept at daily scale, and model outputs are 
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exchanged with a daily time step. This exchange and adaptation of each parameter 
value, in each model, comes with its own complexities and inconsistencies. In 
SIMPLACE, return flows from irrigation are taken into account in the soil water 
balance, while in WaterGAP, return flows are included in net abstractions from 
surface water and groundwater. Hence, the respective equations in WaterGAP to 
compute runoff, streamflow into downstream cells and net abstractions from surface 
water and groundwater need to be adapted. Moreover, daily streamflow in 
WaterGAP is not only impacted by water demand for irrigation, but for all water use 
sectors (domestic, livestock, manufacturing and thermal power). The following data 
exchange is required between the models: 

1)  Data provided by SIMPLACE to WaterGAP: 
• Actual evapotranspiration (reduced by the fraction resulting from return flows 

into soil) 
• Total runoff from cropland 
• Soil moisture 
• Water withdrawals and water consumption for irrigation from surface water 

and groundwater 

2)  Data provided by WaterGAP to SIMPLACE: 
• Available streamflow (adjusted by the amount of water allocated to non-

irrigation water use sectors) 

Data exchange between the models can be achieved through the concept of in-
memory “common coupling”. Common coupling is a coordinated type of pairing, 
where both the models are coupled through a common global variance, which 
facilitates automatic or semi-automatic exchange of data (Yu and Ramaswamy 
2011). “Protocol Buffer” (https://developers.google.com/protocol-buffers/) is 
proposed to be used as the common global variance for common coupling between 
WaterGAP and SIMPLACE. It is an open-sourced, language neutral, platform neutral 
automated mechanism for serializing structured data provided by Google. The flow 
of data exchange between WaterGAP and SIMPLACE is illustrated in Figure 3. The 
proposition is to dock both models on to one server, facilitating efficient 
communication between them and controlling initiations through a shell script. To 
ensure that both models exchange data only at the required time step, a concept of 
ReadWriteLock locking mechanism needs to be introduced in the same code. 

There is one pivotal difference between SIMPLACE and WaterGAP that poses a 
challenge for the coupling: While WaterGAP computes, for each time step, the water 
balance of all grid cells according to a routing order defined by the drainage direction 
map, SIMPLACE computes the water balance for the whole time series grid cell by 
grid cell. During implementation of the described coupling approach, it became 
evident that restructuring SIMPLACE according to the computation sequence of 
WaterGAP results in unreasonably high computational time. Hence, there is currently 
no feasible technical solution for the coupling of these two models. 
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Figure 3. Flow chart of data exchange between WaterGAP and SIMPLACE 

1.3.2 Combining WaterGAP and GCWM to calculate drought hazard for 
irrigated agriculture 

Similar to the simulations at regional scale described before, it was also needed to 
combine information for stream flow (derived from WaterGAP) and irrigation water 
requirement (derived from GCWM) for the simulation of drought hazard for irrigated 
agriculture (see section 1.5.2). Stream flow is used as an indicator of water 
availability for irrigation. Drought hazard for irrigated agriculture was analyzed by 
studying anomalies in the difference between water availability and water 
requirement. 
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1.4 Linking process based modeling with remote sensing 

Objective of GlobeDrought is to analyse drought risk for historical periods, present 
drought risk and to provide ensemble-based forecast of potential risk. In addition the 
drought assessments were performed at global scale and for selected regions. The 
combination of these goals requires to compute drought hazard at high spatial 
resolution (regional studies), global extent (global assessment), for a long period 
stretching from at least 30 years ago (to define the historical distribution of drought 
indicators needed for the baseline) to 8 month in the future (for seasonal forecasts). 
The characteristics of available models and data shows that the required coverage in 
space and time is only achievable by combining remote sensing and modeling 
(Figure 4). Remote sensing offers the advantage of using data at very high spatial 
resolution but with limited coverage in time. Process based models can perform 
simulations for long time periods including projections of future conditions but have 
limitations in either spatial resolution or spatial extent. To combine models with 
remote sensing it is needed to identify variables that can be simulated with the 
models and derived by remote sensing. In GlobeDrought process based models 
(WaterGAP, GCWM, Simplace) and remote sensing (GRACE, MODIS) were linked 
for three processes: changes in water storages, determination of sowing and harvest 
dates of crops and qualtifying drought stress of crops. 

 

 

Figure 4. Data availability for remote sensing and process based modeling 

 

1.4.1 Improving trends in simulated water storages by using changes in total 
water storage obtained from GRACE 

To improve simulations of changes in surface- and subsurface water storages in the 
WaterGAP model, total water storage changes obtained from GRACE were 
assimilated into the model. The use of this independent data source can in particular 
improve the representation of long-term trends in water storages in the model 
(Schumacher et al., 2018).  

1.4.2 Improving sowing and harvest dates in SIMPLACE by remote sensing 
information 

2025202020152010200520001995199019851980



        Final report –  1 Development of tools and methods for drought risk analysis 

Seite 26 von 154 
 

Appropriate sowing and harvest dates are essential to simulate crop water 
requirements and crop drought stress realistically, in particular for more detailed crop 
models applied in semi-arid regions. Unfortunately, little is known about 
representative sowing dates in African countries, in particular about the spatial and 
interannual variability in sowing dates. Therefore, often fix sowing dates or rules 
based on the precipitation distribution are used in crop models. Using remote 
sensing to identify the phenology of crops such as maize (Viña et al. 2004) 
constitutes a promising approach. The impact of the choice of the sowing date on 
maize drought stress and maize yield was therefore tested for South Africa by 
comparing simulation results obtained by the LINTUL-5 crop model implemented in 
the SIMPLACE modeling platform which was applied during the period 2001–2016 
with fix sowing dates, application of a precipitation rule, and use of the MODIS global 
vegetation phenology (MCD12Q2) product (Xiao et al. 2013) to derive the sowing 
date based on the greenup date (Eyshi Rezaei et al., 2021). Maize is the most 
important field crop in South Africa and relevant for both, subsistence farming and 
commercial agriculture.  

1.4.3 Combining drought hazard simulated with process based crop models 
with drought indicators derived by remote sensing 

To validate the drought hazard indicator for rainfed crops in the regional study for 
South Africa and at global scale, the simulated AET/PET ratio for rainfed conditions 
was validated using the remotely sensed AET/PET ratio in the period 2001-2019. 
AET and PET values were extracted from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) product (MOD16A2.006) which provides data at 500m 
spatial resolution (Running et al., 2017). The dataset is derived from meteorological 
reanalysis data coupled with remotely sensed products of land cover and vegetation 
properties (Huang et al., 2017). The dataset was preprocessed based on the quality 
control layer, and pixels with low quality were excluded. The original data set 
provided the AET and PET in 8 days intervals, which were summed up to yearly 
values. The drought hazard indicator for rainfed crops was recalculated for model 
results and remote sensing observations considering the reference period 2001-
2018 to account for the limited availability of remote sensing observations. The 
Pearson correlation coefficient was calculated between model and remote sensing 
based drought hazard at the municipality level (South Africa) or at pixel level (global 
scale) to test for the agreement between simulated and remotely sensed drought 
hazard. 

1.5 Development and application of drought hazard indicators 

1.5.1 Hydrological drought hazard affecting the water supply 

Drought monitoring requires a sound understanding of the underlying concepts of 
drought risk including the applied indicators. Especially drought hazard, as one 
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component of drought risk, has many facets and is thus difficult to define. Previous 
research has revealed that there is often no common understanding among 
stakeholders about drought hazard concepts (Steinemann et al., 2015). 

During the stakeholder workshops of the GlobeDrought project, it also became 
apparent that there are still open questions on the suitability and meaningfulness of 
different drought hazard indicators. One major focus of the sub-project was therefore 
to develop a transparent description and classification scheme for (hydrological) 
drought hazard indicators taking into account the different levels of drought 
characterization (Figure 5; Herbert and Döll, 2021, in preparation) and assumptions 
about the habituation of people and ecosystems to the streamflow regime (Table 1).   

Threshold-based and standardized hydrological drought hazard indicators 

Streamflow drought hazard indicators are generally classified into threshold-based 
and standardized indicators (Van Loon, 2015). The threshold level method (TLM) 
was first applied by Yevjevich (1967), who defined that a drought event begins when 
streamflow falls below a certain threshold, and that the drought severity is equivalent 
to the cumulative streamflow deficit since the onset of the drought event. 
Standardized indicators such as the Standardized Precipitation Index (SPI) (McKee 
et al., 1993) or the Standardized Streamflow Index (SSI) (Vicente-Serrano et al., 
2012) can be described as dryness probability as they indicate how unusually dry the 
current month is regarding streamflow as compared to normal conditions. SSI is 
computed similar to the method introduced in McKee et al. (1993) for SPI. For 
instance, SSI1 for January (Jan) 2015 is computed as (with Q: streamflow): 
[Q(Jan2015) - mean monthly Q(Jan)]/standard deviation[Q(Jan)]. A value of SSI1 = -
1 [-] denotes that monthly streamflow is one standard deviation below the median of 
the respective calendar month. A value of -0.84 is equivalent the 20th percentile of 
monthly discharge (Q80). 

Following the TLM, we computed and analyzed the cumulative streamflow deficit 
indicators CDQI-Q50, CDQI-Q80, and the latter combined with a method that takes 
into account drought conditions in highly seasonal flow regimes, CDQI-Q80-HS 
(Table 1). With CDQI-Q50, a deficit is defined to occur if monthly streamflow is lower 
than the 50th percentile (median) of the calendar month streamflow (or lower than 
the 20th percentile in case of CDQI-Q80). The cumulative streamflow deficit is 
normalized against mean annual streamflow. A value of 2 [-], for example, indicates 
that the cumulative streamflow deficit in a certain month is twice the mean annual 
streamflow. 
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Figure 5. Schematic for computing four types of drought hazard indicators, indicating 
1) magnitude of the drought at a certain time as deficit and/or anomaly or 2) severity 
of the drought event, i.e. the cumulative magnitude of drought since drought onset. 
Both, magnitude and severity, can be expressed in terms of frequency/probability to 
compare the drought of interest to other droughts. The grey boxes indicate decisions 
made when computing the indicators. Indicators in bold have already been applied in 
the literature. Assumptions about the habituation of people and ecosystems 
determine the selection of the type of indicator, the averaging period and the 
threshold (see Table 1) 
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Table 1. Characteristics of streamflow drought hazard indicators suitable for global-
scale assessments and their inherent assumptions about habituation of people or 
other biota 

Assumed habituation 
People, other biota 
accustomed to: 

Indicator Prominent, hydrology-related characteristics 

Interannual variability 

SPI12 Often used as proxy for hydrological drought hazard. However, 
processes in altered flow regimes cannot be characterized. 

SPEI12 Often used as proxy for hydrological drought hazard. However, 
processes in altered flow regimes cannot be characterized. 
Better suited in climate change impact assessments than SPI12 as it 
uses not only precipitation, but also temperature as input. 

SSI12 Suitable in study regions with access to reservoirs, which buffer 
potential monthly streamflow deficits. 

Seasonality and 
interannual variability 

SSI1 
 

Suitable in study regions without access to reservoirs. 

CDQI-Q80 The study region is in drought 20 % of the time. 
With Q80 (per calendar month) as a rather low threshold, 
streamflow drought hazard might be underestimated in regions 
with high vulnerability and interannual variability. 

CDQI-Q80-HS The study region is in drought at least 20 % of the time. 
An existing drought continues during a pre-defined low-flow season 
even if Q80 is exceeded, as it can be assumed that the region will 
not recover from the drought during the low-flow season. 

Seasonality 

CDQI-Q50 The study region is in drought 50 % of the time. 
Using such a high threshold can be beneficial in highly vulnerable 
regions where people cannot even cope with small reductions in 
median monthly streamflow. 

CDQI-WUs An indicator of water deficit rather than drought hazard. 
The health of river ecosystems is not taken into account. 

CDQI-WUs-EFR EFR based on Qant 1): The river ecosystem has adjusted to the 
altered flow regime over the last decades, which is considered the 
“new normal status”. 
EFR based on Qnat 2): the natural flow regime is the aspired status. 

RDQI1 Suitable in study regions without large surface water storages. 

Mean annual conditions RDQI12 Suitable in study regions with large surface water storages, which 
buffer monthly streamflow fluctuations. 

1) Qant: Modeled anthropogenic streamflow altered by human water use and dams 
2) Qnat: Naturalized modeled streamflow 

A direct comparison between CDQI-Q80 and SSI1 is not possible. While the former 
indicates the severity of the current drought event, i.e. the cumulative streamflow 
deficit since the onset of the drought event., negative values of SSI represent the 
drought magnitude, i.e. the non-accumulated streamflow deficit at the considered 
time step (see Figure 5). On the other hand, going one computational step 
backwards with CDQI-Q80, i.e. the time series of monthly deficits, and going one 
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step further with SSI1, i.e. the time series of cumulative standardized deficits below a 
threshold of -0.84 (= Q80), reveals that both indicators are basically the same (given 
that Q80 for CDQI is derived from the probability density function used to compute 
SSI1). Therefore, we argue that the differentiation between TLM-based and 
standardized indicators might be misleading. Figure 5 depicts the computational 
steps that distinguish four different types of drought hazard indicators such as CDQI-
Q80 (left) and SSI1 (third column): Computation of 1) drought magnitude (non-
accumulated anomaly or deficit at each time step), 2) drought severity (cumulative 
anomaly or deficit since drought onset at each time step) and 3) probability of a 
drought event of a certain severity. For each of the four indicator-specific “flow 
schemes”, a threshold needs to be selected in one of the steps in order to define 
drought onset and termination. When selecting indicators of drought hazard, one 
should be aware which level of drought characterization it represents (e.g. monthly 
anomaly vs. severity of drought event). 

Through the selected methods and criteria to define drought events, any drought 
hazard indicator implies assumptions about the habituation and thus vulnerabilty of 
people and the ecosystem at risk. With the rather high threshold Q50 in CDQI-Q50, it 
is assumed that people and the river ecosystem are accustomed to seasonality but 
not interannual variability. This means that people and ecosystems are used to the 
fact that streamflow is generally lower in, e.g., August compared to March, but they 
may suffer in years where streamflow in August is below mean (or rather median) 
conditions. Especially in semi-arid regions, where interannual variability is high and 
where people are often vulnerable to drought, a lower threshold than Q50 (e.g. Q80) 
might not capture or underestimate streamflow drought hazard. However, CDQI-Q50 
is less suitable in humid regions where interannual variability in streamflow, and 
often vulnerability to drought, is low. Here, indicators with a lower percentile, such as 
Q80, would be more meaningful. 

Similar to using low percentiles as threshold (as in CDQI-Q80), the concept of SSI1 
is based on the assumption that people and biota are used to seasonality and 
interannual variability. In regions where this is not the case, relative deviations from 
mean streamflow might be better suited to capture the drought hazard (implicitly 
assuming that people are used to the mean instead of variability). Comparing a 
humid (low interannual variability) with a semi-arid (high interannual variability) 
region, the same negative SSI1 (e.g. -0.84) value would correspond to a much 
stronger negative deviation from mean streamflow in the semi-arid area (e.g. -50 %) 
compared to the humid area (e.g. -20 %). Hence, although SSI1 has the advantage 
of being comparable among regions with different flow regimes, it might 
underestimate streamflow drought hazard in semi-arid areas. Regarding the 
accumulation period of one month, SSI1 has the advantage of identifying the onset 
of a drought as opposed to longer accumulation periods (e.g. SSI12) where 
deviations from normal conditions are smoothed and the identification of a drought is 
delayed. However, since SSI1 can only quantify the current status of drought hazard, 
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it is more suitable for the assessment of drought hazard for irrigated agricultural 
systems and water supply systems in regions without surface water storages 
(reservoirs and lakes). 

CDQI-Q80-HS is a new indicator developed within the GlobeDrought framework. It 
combines CDQI-Q80 with a method that takes into account 
drought conditions in highly seasonal flow regimes. It allows an existing drought to 
continue during a pre-defined low-flow season even if streamflow exceeds the 
calendar month Q80 (Table 1). For each grid cell, the low-flow season is defined to 
encompass all calendar months in which the mean monthly flow during the reference 
period is less than 20 % of the mean monthly flow averaged over all calendar 
months. A drought event that has built up outside of the low-flow season will 
continue throughout the low-flow season; the cumulative deficit is reduced by the 
streamflow surplus over the calendar month Q80. The rationale behind this approach 
is that people and the ecosystem cannot recover from a drought during the low-flow 
season if flow during this season is only a small percentage of total streamflow in 
each year. The indicator can add additional value in regions with high seasonal 
streamflow variability where people strongly rely on water storage in man-made 
reservoirs that needs to be replenished by streamflow. 

While drought hazard and vulnerability to drought are independent components of 
drought risk, drought hazard indicators imply assumption about habituation to 
different types of temporal streamflow variability, i.e. about the type of temporal 
streamflow dynamics that people and ecosystems are used to. Table 2 lists the 
implicit assumptions about habituation of humans and other biota for the indicators 
computed within GlobeDrought as well as selected unique characteristics relevant in 
hydrology-related assessments. In addition to the above described indicators, Table 
2 includes RDQI1 and RDQI12 (relative deviation from mean streamflow averaged 
over one month and 12 months, respectively) and the newly developed water deficit 
indicators CDQI-WUs and CDQI-WUs-EFR. These are computed similar to CDQI-
Q80, but using as thresholds mean monthly surface water use WUs, and in case of 
the latter WUs plus mean monthly environmental flow requirements, EFR = 80 % of 
mean monthly discharge. 
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Figure 6. Global comparison of overall drought severity during 1986-2015 based on 
the probability of exceedance p for two streamflow drought hazard indicators: 
Cumulative streamflow deficit indicator with monthly Q80 as threshold (CDQI-Q80) 
(a) and cumulative relative deviation from mean monthly streamflow with -50% as 
threshold (cumulative RDQI1-50%) (b). A high value denotes a high sum of severity 
compared to other grid cells. A value of 0.8 in grid cell i, for example, means that in 
80% of all grid cells the sum of severities of all drought events during 1986-2015 was 
smaller than in grid cell i. Greenland was excluded from the analysis 

Figure 6 shows a global comparison of the cumulative drought severity during 1986-
2015, transferred into the probability of exceedance p, for CDQI-Q80 (top) and the 
cumulative relative deviation from mean monthly streamflow with a threshold of -
50 % (cumulative RDQI1-50%) (bottom). The figure illustrates that the 
conceptualization and selection of a drought hazard indicator can lead to very 
different patterns of drought severity. RDQI generally leads to a higher level of 
severity in dry areas with high interannual variability (e.g. northern Africa, Australia 
and Arabian Peninsula). The figure highlights the need to provide a suite of hazard 
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indicators with different assumed types of habituation of the people/ecosystem at risk 
for a global-scale drought monitoring, since at the global scale, it is unknown which 
streamflow conditions are perceived as normal. In conclusion, rather than 
differentiating between TLM and standardized indicators, drought hazard indicators 
should be classified according to the inherently assumed type of habituation: 1) 
percentile-based indicators (e.g. CDQI-Q80, SSI1), suitable in case of habituation to 
interannual variability and seasonality of streamflow and 2) indicators showing the 
relative deviation from mean conditions, suitable in case of habituation to seasonality 
only, while suffering from interannual variability of streamflow. 

Defining drought hazard indices combining water deficit and anomaly 
characteristics 

According to the Australian Bureau of Meteorology, “drought is a prolonged, 
abnormally dry period when the amount of available water is insufficient to meet our 
normal use (BoM, 2018)”. This definition describes drought as both an anomaly 
(“less water than normal”) and a deficit (“less water than required”), reflecting general 
non-expert notions of drought. However, most experts define drought only as an 
anomaly, for example, as “a lack of water compared to normal conditions which can 
occur in different components of the hydrological cycle” (van Loon et al., 2016, 
p.3633). Also, most drought indices only consider the anomaly aspect. 

During the GlobeDrought project, we developed and related two drought hazard 
indicators that combine both the deficit and anomaly aspects: one for soil moisture 
drought and the other for streamflow drought (Popat and Döll, 2021). In the soil 
moisture deficit anomaly index (SMDAI), which describes the drought hazard for 
vegetation, the deficit is calculated as the difference between the soil moisture at 
field capacity (that which should allow optimal, non-water-limited plant growth) and 
the actual soil moisture. The SMDAI slightly modifies and simplifies the DSI 
introduced by Cammalleri et al. (2016). Another difference from Cammalleri et al. 
(2016) is that the SMDAI is computed globally, using the output of WaterGAP, rather 
than just for Europe. The streamflow deficit anomaly index QDAI is, to our 
knowledge, the first-ever streamflow drought indicator that combines both the 
anomaly and deficit aspects of streamflow drought. In the case of QDAI, the deficit is 
computed by comparing actual streamflow to the combined human and 
environmental surface water demand per grid cell. QDAI focuses on determining the 
drought hazard for the water supply for humans, including domestic, industrial, and 
irrigation water demand. QDAI is constructed similarly to SMDAI and computed 
globally using WaterGAP. 

We found that the values of the combined deficit-anomaly drought indices are often 
broadly similar to purely anomaly-based indices. However, the deficit anomaly 
indices provide more differentiated spatial and temporal patterns that help to 
distinguish the degree and nature of the actual drought hazard to vegetation health 
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or the water supply. Like all hydrological drought indicators that reflect streamflow 
anomaly, QDAI needs to be interpreted carefully in case of highly intermittent 
streamflow regimes. QDAI can be made relevant for stakeholders with different 
perceptions about the importance of ecosystem protection, by adapting the approach 
for computing the amount of water that is required to remain in the river for the well-
being of the river ecosystem. 

The term “drought hazard” can be defined as the source of a potential adverse effect 
of an unusual lack of water on humans or ecosystems. In this sense, SMDAI and 
QDAI are drought hazard indicators, even if they include some elements of 
vulnerability to drought. Both SMDAI and QDAI are well applicable in drought risk 
studies. In local drought risk studies, additional indicators of ecological or societal 
vulnerability should be added. In regional or global drought risk studies, the inclusion 
of grid-scale values of QDAI and SMDAI would be beneficial as both indices contain 
spatially highly resolved information on vulnerability, while most other vulnerability 
indicators represent spatial averages of much larger spatial units such as countries. 

Analyzing the impact of streamflow drought hazard on hydroelectricity 
production 

Electricity production by hydropower is negatively affected by streamflow drought. To 
understand, monitor and manage risks of less than normal streamflow for 
hydroelectricity production (HP) at the global scale, an HP model was developed that 
simulates time series of monthly HP worldwide and thus enables analyzing and 
monitoring the impact of drought on HP (Wan et al., 2020). The HP model is based 
on a new global hydropower database (GHD), containing 8748 geo-localized plant 
records, and on monthly streamflow values computed by WaterGAP. 

Within the framework of GlobeDrought, four new indices of HP decrease due to 
streamflow drought were developed: HPA3 indicates how unusually low a HP 
reduction is compared to normal conditions. The approach roughly follows the SPI 
method with a 3-month averaging period. HPR3 shows the relative HP reduction 
compared to the long-term mean. A comparison of both indicators (Figure 7) in 
August 2003 reveals that, e.g., the extreme drought conditions in different countries 
as indicated by HPA3 correspond to very different relative reductions (HPR3) 
between 0.2-0.4 (European countries), 0.1-0.2 (Myanmar), and (Cameroon). Hence, 
both indicators have a different informative value on drought conditions and can be 
used complementary in drought assessment. Both indices were further modified by 
multiplying them by rHP (HP-to-total-electricity-production ratio). The resulting EPA3 
and EPR3 indices (Wan et al., 2020, their Figure 10) provide information about to 
what extent HP reduction during drought affects the whole electricity production. 
However, due to the small contribution of HP to total EP, the negative impact 
becomes rather small. 
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Figure 7. Country-level drought conditions as indicated by HP anomaly HPA3 (a) 
and relative reduction HPR3 (b) in August 2003 

The HP model can capture the interannual variability of country-scale HP that was 
caused by both (de)commissioning of hydropower plants and streamflow variability. 
It can also simulate the streamflow drought and its impact on HP reasonably well. A 
drought risk analysis for period 1975−2016 revealed the reduction of HP that is 
exceeded in 1 out of 10 years. 71 out of 134 countries with hydropower suffer from a 
reduction of more than 20% of average HP, and 20 countries from a reduction of 
more than 40%. 
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Analyzing patterns of hydrological drought based on total water storage 
change obtained from GRACE  

Change in water storages can also de detected by the GRACE satellite because any 
water flux is related to a mass flux altering the earth gravity field. Therefore, distinct 
drought indices based on Total Water Storage Anomalies (TWSA) obtained from 
GRACE were tested for their ability to reproduce hydrological droughts observed in 
historical years in NE Brazil, West India and South Africa (Gerdener et al., 2020).  

Near-real time monitoring of hydrological drought hazard 

With WaterGAP, near-real time monitoring of hydrological drought hazard is currently 
possible at a monthly time scale, i.e. near-real time drought hazard indicators can be 
computed for the preceding month with a delay of approximately seven days. As 
some scripts are not adapted to the specific requirements yet, only the 
conceptualization of near-real time monitoring is described below (to be completed in 
March 2021). All process steps can be started within one shell script. Among the five 
water use sectors in WaterGAP (irrigation, domestic, livestock, manufacturing and 
thermal power), only irrigation water demand is updated in a near-real time 
monitoring, since it is the only climate-dependent water use. As for the other water 
use sectors, annual values, currently available until 2016, are assumed to remain 
constant after 2016. The process chain for near-time WaterGAP computations of 
hydrological drought indicators is as follows: 

1) Download of ERA5T climate data at day 5 in each month for the preceding month  

2) Climate data check (plausibility, NaN values, etc.) 

3) Computation of irrigation water demand for the last month 

Irrigation water use in WaterGAP is computed by the Global Irrigation Model (GIM) 
based on annual time series of the area equipped for irrigation (AEI) and the ratio 
between area actually irrigated (AAI) and AEI (sources of data and scaling 
procedures are described in Müller Schmied et al., 2021). As AAI/AEI ratios are only 
available until 2005 or 2008 (depending on the country), the values are assumed to 
remain constant after 2005 and 2008, respectively. Since GIM can only be applied 
for a whole year, the future months in the current year need to be filled with 
placeholders. 

4) Computation of net water abstractions for the last month 

The linking model Groundwater-SurfaceWater Use (GWSWUSE) computes the 
fractions of all five sectoral water abstractions and consumptive water use in each 
grid cell that stem from either groundwater or surface water bodies (lakes, reservoirs 
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and river). From these values, net abstractions from surface water and groundwater 
are computed. 

5) Run hydrological module of WaterGAP (WGHM) for the last month 

Variant 5a) Run WGHM in “annual mode” (standard) from 1901 until current year 
(use “placeholders” for future months of the current year) 

Variant 5b) Run WGHM in “monthly mode”: WGHM can be started at any month. 
Storages are initialized with the values of the last day of the preceding month. For 
simulation of January 2021, for example, storages are initialized with the values from 
31 December 2020.  

6) Post-processing of WaterGAP output 

Computation of monthly hydrological drought hazard indicators, mapping and upload 
of maps to public server, upload of relevant model output and indicators to public 
server. 

Probabilistic seasonal forecast of hydrological drought hazard 

In the framework of GlobeDrought, it was not the goal to compute actual seasonal 
forecasts of hydrological drought indicators by driving WaterGAP with an ensemble 
of actual meteorological seasonal forecast. As planned, we only simulated the 
generation of an ensemble forecast of hydrological drought indicators by driving 
WaterGAP not with actual seasonal forecasts of climate variables but by historic 
climate data where each of 30 historic years was considered as one ensemble 
member of a seasonal forecast. The aim was to derive methods for seasonal 
forecast analysis and communication. We used the drought hazard indicator ADQI-
Q80,lfm and ERA5 climate data to simulate a seasonal forecast starting at the end of 
2018. To this end, 30 WaterGAP model runs were conducted until 31 December 
2018, where the climate data input until 2018 was the standard ERA5 time series, 
while the year 2019 was simulated with the climate data of one of the 30 climate 
years 1989-2018 as alternative climate forcing. The resulting range of possible 
streamflow drought hazard in 2019 is shown in Figure 8 for the WaterGAP calibration 
station in Mainz, Rhine River, Germany. The drought hazard range of the 
probabilistic forecast in 2019 is not the same as the actual drought hazard range 
during 1989-2018. This is due to the fact that a) streamflow in January 2019 
depends on water storages in December 2018 and b) the accumulated deficit in 
January 2019 depends on the deficit in December 2018. For instance, drought 
hazard in 2017 is not the same as in the probabilistic forecast year 2017 (yellow line 
in Figure 8), since water storages as well as accumulated deficits were different in 
December 2016 and 2018. Moreover, the probabilistic forecasts based on the 
drought years 2003 and 2011 are highlighted in red (2011) and dark red (2003). In 
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addition to station-specific (or grid-cell specific) analyses, seasonal forecast results 
should be summarized in global maps, e.g. showing the following: 

• Percentage of ensemble runs per grid cell that exceed a certain drought 
hazard threshold (maps can be compared for different indicators and different 
drought hazard thresholds), 

• Mean indicator over all ensemble members. 
 

 

Figure 8. Probabilistic forecast for the year 2019 based on the drought hazard 
indicator ADQI-Q80,lfm and ERA5 climate data at the WaterGAP calibration station 
Mainz, Rhine River, Germany 

1.5.2 Development of drought hazard indicators for rainfed and irrigated crop 
production 

Drought hazard indicators were developed in GlobeDrought based on remote 
sensing and based on crop water modelling. Remote sensing based indicators have 
the advantages of a very high spatial resolution and that the drought indicators are 
based on reflections of the land surface that is really be measured at a specific 
location and time. Disadvantages are that observations are limited to the more 
recent period since 2001 (MODIS) or 1989 (NOAA AVHRR) and that it is usually not 
possible to distinguish specific crops or irrigated and rainfed crops. In contrast, 
models can be applied for a longer period than remote sensing but are more limited 
with regard to the spatial resolution. They can distinguish specific crops and irrigated 
versus rainfed conditions but the accuracy of the simulations is constrained a lot by 
the uncertainty in the input data for cropping patterns, climate and soil and the 
assumptions made for the begin and end of the growing seasons.  

Remote sensing based drought hazard analyses 

Mainly remote sensing based drought hazard analyses were performed for 
Zimbabwe (Frischen et al., 2020), the case study regions Missouri basin, Zimbabwe 
and South Africa (Schwarz, 2020) and at global scale (Ghazaryan et al., 2020). The 
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workflow in the analyses and the data processing steps are illustrated in Figure 9. 
Although the three studies used different methods with distinct complexity, all 
approaches successfully determined drought hazard. Drought hazard patterns 
agreed also well for study regions and years considered in more than one 
assessment. The hazard analysis performed for Zimbabwe (Frischen et al., 2020) 
was based on anomalies in the Normalized Difference Vegetation Index (NDVI) and 
temperature, combined in the Vegetation Health Index (VHI). The study for the 
Missuri River Basin, South Africa and Zimbabwe (Schwarz et al., 2020) combined 
five hazard indicators in a logistic regression model to estimate the probability of  

 

 

 

 

Figure 9. Workflow in the remote 
sensing based drought risk analyses 
performed for the Missouri River Basin, 
South Africa and Zimbabwe (upper left, 
Fig. 1 in Schwarz et al., 2020), the global 
scale (upper right, Fig. 1 in Ghazaryan et 
al., 2020) and for Zimbabwe (bottom left, 
Fig. 2 in Frischen et al., 2020) 
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drought, namely precipitation anomaly (SPI), NDVI, Normalized Difference Infrared 
Index (NDII), Albedo and Land Surface Temperature (LST). The logistic regressions 
were performed separately for the three regions. Consequently, the variables and 
coefficients considered in the final regression model differed. The global scale study 
(Ghazaryan et al., 2020) tested anomalies of the three indices NDVI, LST and 
AET/PET ratio for their correlation with yield anomalies to derive drought hazard and 
the percentage of cropland affected by drought. Since the three indices were treated 
separately in the correlations, an objective was also to find out which of the indices 
was most suitable to predict negative yield anomalies as usually caused by drought.  

Drought hazard analyses based on process based crop water modeling 

In addition to the remote sensing based assessments described before, two studies 
were performed to estimate drought hazard based on the output of process based 
models. One study was performed at global scale (Meza et al., 2020) and one study 
for South Africa (Meza et al., 2021). The Global Crop Water Model (GCWM) was 
applied for period 1981-2018 to estimate drought stress of rainfed crops or water 
requirements of irrigated crops. In addition, WaterGAP was used to simulate 
streamflow anomalies which were used as indicator of water availability for irrigation. 
Drought hazard is defined as a deviation of the situation in a specific year or month 
from long-term mean conditions in the 30-year reference period from 1986 to 2015. 
For the global study (Meza et al., 2020) the two models were still forced with different 
climate input covering the period 1981-2016. WaterGAP 2.2d, was forced by the 
WFDEI-GPCC climate data set (Weedon et al., 2014), which was developed by 
applying the forcing data methodology developed in the EU project WATCH on ERA-
Interim reanalysis data. GCWM used the CRU-TS 3.25 climate data set (Harris et al., 
2014) as input. CRU-TS 3.25 was developed by the Climate Research Unit of the 
University of East Anglia by interpolation of weather station observations and is 
provided as a time series of monthly values. Pseudo-daily climate was generated by 
the GCWM as described in Siebert and Döll (2010). For the subsequent regional 
study for South Africa (Meza et al., 2021), both models were adjusted to use daily 
climate input data for period 1981-2018 obtained from the ERA5 global reanalysis 
product (Hersbach et al., 2020).   

Drought hazard for irrigated agricultural systems 

The irrigated hazard index CH_IrrigAgy (-) is defined based on the annual difference 
between the water resource available for irrigation and irrigation water requirement. 
The water resource available for irrigation was simulated using the WaterGAP model 
(Müller-Schmied et al., 2021) as annual sum of discharge Q at a spatial resolution of 
30 arcmin. The irrigation water requirement IWR was simulated using GCWM as the 
volume of water needed to increase the AET of irrigated crops to their PET (Siebert 
and Döll, 2010). Drought hazard for irrigated crops CH_IrrigAgy was computed as: 
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𝐶𝐶𝐶𝐶_𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑦𝑦 = (𝑄𝑄−𝐼𝐼𝐼𝐼𝐼𝐼)𝑚𝑚𝑚𝑚𝑚𝑚−(𝑄𝑄𝑦𝑦−𝐼𝐼𝐼𝐼𝐼𝐼𝑦𝑦)
𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚

        (1) 

where (𝑄𝑄 − 𝐼𝐼𝐼𝐼𝐼𝐼)𝑚𝑚𝑚𝑚𝑚𝑚 is the median of the difference between discharge and 
irrigation water requirement (m3 yr-1) in the reference period 1986-2015 (Meza et al., 
2021). Qy and IWRy are discharge and irrigation water requirements in year y (m3 yr-

1), and 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 is the median of the annual discharge in the reference period 1986-
2015 (m3 yr-1). Positive values of CH_IrrigAgy indicate drought, while negative values 
indicate that the difference between water resources and water demand for irrigation 
is larger than usual (wetness). Both models (GCWM and WaterGAP) used the same 
soil and climate input data and the same simulation period (1981-2018). The outputs 
of GCWM (for crops grown in South Africa) were aggregated to 30 arcmin to match 
the spatial resolution used by WaterGAP. A similar analysis was performed also at 
global scale (Appendix A1). The long-term hazard for irrigated conditions at grid level 
was computed as the frequency of the years with an irrigated hazard index 
CH_IrrigAgy of bigger than 0.5 meaning that the deficit in the annual difference 
between discharge and irrigation requirement exceeded half of the long-term median 
of annual discharge. A long term hazard for irrigated conditions of 0.2 means then 
that such a deficit occurs every 5 years. 

Drought hazard for rainfed agricultural systems 

The rainfed hazard indicator was computed using the ratio between actual 
evapotranspiration (AET) and potential (PET) evapotranspiration of crops in the crop 
growing season for the period 1981-2018. AET refers to the amount of water 
consumed by a crop and evaporated from the soil under actual soil moisture 
calculated by performing a soil water balance in daily time steps, while PET assumes 
no limitation in crop water availability. The ratio is highly associated with crop yield 
and is widely used as a drought indicator for cropland (Peng et al., 2019). The Global 
Crop Water Model (GCWM) (Siebert and Döll, 2010) was employed to simulate AET 
and PET for specific crops grown in South Africa based on prescribed crop 
calendars and cropping patterns derived from the the MIRCA2000 dataset 
(Portmann et al., 2010). A similar analysis was also performed at global scale 
(Appendix A1). The spatial resolution of GCWM’s is five arcmin (8.3 km). Drought 
hazard in specific years was defined as deviation from the long-term mean condition 
in the reference period 1986-2015 (Meza et al., 2020; Meza et al., 2021). The annual 
hazard indicator for rainfed agricultural systems CH_RfAgy was calculated as: 

𝐶𝐶𝐶𝐶_𝐼𝐼𝑅𝑅𝑖𝑖𝑖𝑖𝑦𝑦 = 1 − 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦/𝑃𝑃𝐴𝐴𝐴𝐴𝑦𝑦
𝐴𝐴𝐴𝐴𝐴𝐴/𝑃𝑃𝐴𝐴𝐴𝐴

          (2) 

where AETy and PETy are annual sums of actual and potential evapotranspiration of 
all cultivated crops in year y (m3 yr-1). 𝑖𝑖𝐴𝐴𝐴𝐴and 𝑃𝑃𝐴𝐴𝐴𝐴 are the long-term annual mean of 
actual and potential evapotranspiration (m3 yr-1) in the reference period 1986-2015. 
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Consequently, positive values of CH_RfAgy represent conditions dryer than usual, 
while negative values indicate wet years. The long term hazard during the study 
period at grid level was computed as the frequency (percentile rank) of years in 
which the AET/PET ratio was at least 10% lower than the mean AET/PET ratio in the 
reference period 1986-2015 (Meza et al., 2020). A long-term hazard of 0.5 means 
therefore that in every second year the AET/PET ratio is lower than 90% of the long-
term mean AET/PET ratio. 

1.6 Drought exposure analysis 

Following the definitions of the Intergovernmental Panel on Climate Change put 
forward in their Fifth Assessment Report (IPCC, 2014), exposure is defined as the 
elements located in areas that could be adversely affected by drought hazard. The 
distinct exposure of irrigated and rainfed agricultural systems to drought was 
considered by weighting grid-cell-specific hazards with the harvested area of 
irrigated and rainfed crops. 

1.6.1 Global scale analysis 

The monthly irrigated and rainfed crop areas' (MIRCA2000) data set (Portmann et 
al., 2010) was used when aggregating grid-cell-specific hazards to exposure at a 
national scale. MIRCA2000 was also used to inform the models used in the hazard 
calculations about growing areas and growing periods of irrigated and rainfed crops. 
The data set refers to the period centered around the year 2000; time-series 
information is not available at a global scale. To maximize the representativeness of 
the land use, the reference period and evaluation period used in this study were 
centered around the year 2000. Grid specific drought hazard was then weighted with 
harvested area when computing the mean hazard per country (Meza et al., 2020). 
The combined drought exposure of rainfed and irrigated cropping systems was 
evaluated at the country level by averaging the harvested-area weighted drought 
exposure of irrigated and rainfed cropping systems. As described before, distinct 
methods were used to calculate hazard and exposure of irrigated and rainfed 
systems so that a direct comparison of the exposure values is not meaningful. In 
addition, the frequency distributions differed considerably, with a harvested-area 
weighted global mean of the drought exposure of 0.455 for irrigated systems and 
0.189 for rainfed systems. To ensure a more similar weight of rainfed and irrigated 
drought exposure, country-specific exposures were divided by the global mean, and 
then the integrated exposure was calculated as harvested-area weighted mean: 

Exptot=((AHrf⋅Exprf/0.189)+(AHirr⋅Expirr/0.455))/AHtot      (3) 

with Exptot, Exprf and Expirr being the exposure of the whole, rainfed and irrigated 
cropping systems to drought and AHtot, AHrf and AHirr being the harvested area of 
all crops, rainfed crops and irrigated crops. 
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1.6.2 Regional analysis 

The estimation of exposed agricultural land in the regional studies for South Africa 
was based on the South African National Land Cover dataset 2018 (Thompson, 
2019), from which irrigated and rainfed land were extracted as separate classes. The 
SANLC 2018 map has 20 meters spatial resolution and was generated using multi-
seasonal Sentinel 2 satellite time series data acquired during the period 01 January 
2018 to 31 December 2018 with 90.14% accuracy (Thompson, 2019). Rainfed 
systems are mostly located in the North Eastern provinces, as well as in Northern 
and Western Cape (DAFF 2018). The hazard indicators - CH_RfAgy and 
CH_IrrigAgy - were aggregated from pixel to municipality level as average of the 
pixel values, using the rainfed or irrigated area within each pixel derived from the 
SANLC 2018 dataset for weighting. From this point, the combined components of 
hazard and exposure are referred to as ‘hazard/exposure’. For the studies in 
Zimbabwe, a land cover map separating irrigated and rainfed cropland was 
developed as part of the GlobeDrought project (Landmann et al., 2019) because 
alternative products have not been available.  

1.7 Development of drought vulnerability indicators and indices 

According to the Intergovernmental Panel on Climate Change (IPCC, 2014), 
vulnerability is the predisposition to be adversely affected as a result of the sensitivity 
or susceptibility of a system and its elements to harm, coupled with a lack of coping 
and adaptive capacity. The assessment of drought vulnerability is complex because 
it depends on both biophysical and socioeconomic drivers (Naumann et al., 2014). 
Due to this complexity, the most common method to assess vulnerability in the 
context of natural hazards and climate change is using composite indicators or 
index-based approaches (Beccari, 2016; de Sherbinin et al., 2019). Although their 
usefulness for policy support has also been subject to criticism (Hinkel, 2011; 
Beccari, 2016), it is widely acknowledged that composite indicators can identify 
generic leverage points for reducing impacts at the regional to global scale 
(De Sherbinin et al., 2019; UNDRR, 2019). In some studies performed by 
GlobeDrought in which the hazard and exposure analysis was mainly based on 
remote sensing (Ghazaryan et al., 2020; Schwarz et al., 2020) vulnerability to 
drought was analysed by using a simplified methodology based on just a few 
indicators (Figure 9). In contrast, a very detailed vulnerability analysis based on a 
large number of indicators was performed for the global drought risk study (Meza et 
al., 2020) and the two regional assessments for Zimbabwe (Frischen et al., 2020) 
and South Africa (Meza et al., 2021). These advanced vulnerability assessments are 
described in this section in more detail. 

Following the workflow to calculate composite indicators proposed by the 
Organisation for Economic Co-operation and Development (OECD, 2008) and 
Hagenlocher et al. (2018), the methodological key steps on which the vulnerability 
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assessment is based are (1) the definition of the conceptual framework, 
(2) identification of valid indicators, (3) data acquisition and preprocessing, 
(4) analysis and imputation of missing data, (5) detection and treatment of outliers, 
(6) assessment of multicollinearities, (7) normalization, (8) weighted aggregation, 
and (9) visualization. 

1.7.1 Global scale analysis of vulnerability to drought 

An initial set of vulnerability indicators for agricultural systems was identified based 
on a recent review of existing drought risk assessments (Hagenlocher et al., 2019). 
In total 64 vulnerability indicators, including social, economic and physical indicators; 
farming practices; and environmental, governance, and crime and conflict factors, 
were selected and classified by socioecological susceptibility (SOC_SUS, 
ENV_SUS), a lack of coping capacity (COP) and a lack of adaptive capacity (AC) 
following the risk framework of the IPCC (IPCC, 2014). Indicator weights, which 
express the relevance of the identified indicators to characterizing and assessing the 
vulnerability of agricultural systems to droughts, were identified through a global 
survey of relevant experts (n=78), the majority of whom have worked in academia 
and for governmental organizations with more than 5 years of work experience 
(Meza et al., 2019). In total, 46 of the 64 indicators were considered relevant by the 
experts, comprising susceptibility, coping- and adaptive-capacity indicators. 
However, since adaptive capacity is only relevant when assessing future risk 
scenarios and less relevant to current risk, indicators related to adaptive capacity 
and indicators that could be measured with the same data source due to the 
similarity in what they represent were removed. For instance agriculture (% of GDP) 
and dependency on agriculture for livelihood (%) were averaged into one income 
indicator, and the variables GDP per capita (PPP – purchasing-power parity) and 
population below the national poverty line (%) both refer to poverty and therefore 
were also averaged to a combined indicator. This resulted in a set of 26 indicators as 
part of the vulnerability assessment. 

Following data acquisition, the data were preprocessed by transforming absolute to 
relative values and standardized when necessary (e.g., travel time to cities ≤ 30 min 
– population, divided by the total population). Descriptive statistics were used to 
evaluate the degree of missing data. The imputation of missing values was done with 
data from previous years and using secondary sources following Naumann et 
al. (2014) in cases where the r value lay between −1.0 and −0.9 or 1.0 and 0.9 using 
a Spearman correlation matrix and scatter diagram for visual interpretation. 
Following suggestions by Roth et al. (1999), Peng et al. (2006) and Enders (2003), 
listwise and pairwise deletion thresholds were selected when >30 % of data were 
missing on a country level and when >20 % of data were missing on the indicator 
level. After the deletion, 168 countries and 26 indicators were considered for the final 
analysis. To detect potential outliers, scatter plots and box plots for each indicator 
were created. Potential outliers were further examined using triangulation with other 
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sources and past years. On this basis, outliers were identified in only one indicator 
(i.e., fertilizer consumption – kg ha−1 of arable land) and treated using winsorization 
following Field (2013). Multicollinearities were identified using a Spearman 
correlation matrix for the different vulnerability components (social susceptibility, 
environmental susceptibility and a lack of coping capacity). Following the rule 
proposed by Hinkel et al. (2011), any values higher than r>0.9 or smaller 
than r<−0.9 were considered very highly correlated. The correlation was considered 
only if it was significant at the 0.05 level (two-tailed). Two indicators for the lack of a 
coping-capacity component and two from social susceptibility (e.g., healthy life 
expectancy at birth – years – and disability-adjusted life) showed high and significant 
correlations. However, no indicators were excluded on this basis due to the 
difference in concepts they represented and their relevance at the global level. In 
order to render the indicators comparable, the final selected indicators were 
normalized to a range from 0 to 1 using min–max normalization (Naumann et al., 
2014; Carrão et al., 2016): 

Zi=Xi−Xmin/Xmax−Xmin          (4) 

where Zi is the normalized score for each indicator score Xi. For variables with 
negative cardinality to the overall vulnerability the normalization was defined as 

Zi=1−(Xi−Xmin/Xmax−Xmin)         (5) 

Finally, the normalized indicator scores were aggregated into vulnerability 
components (SOC_SUS, ENV_SUS, COP) using weighted arithmetic aggregation 
based on (using the example of SOC_SUS) 

SOC_SUS=∑WiZi           (6) 

where Wi is the weights for each normalized data set, and Zi is the weights as 
obtained from the global expert survey. Therefore, weights were normalized to add 
up to 1. The vulnerability components of socioecological susceptibility (SE_SUS) 
were combined using an average, which was then combined with COP to obtain a 
final vulnerability index (VI) score: 

VI=V(SE_SUS)+V(COP)/2          (7) 

1.7.2 Regional analysis of vulnerability to drought 

Drought impacts are often associated with drought hazard severity, but the degree of 
the impact is mediated by the vulnerability of the exposed agricultural system, i.e. its 
susceptibility and the (lack of) capacity to cope with drought events (IPCC, 2014; 
World Bank, 2019). While an array of methods for assessing vulnerability to natural 
hazards exists, indicator-based approaches are amongst the most common to 
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represent the multi-dimensional nature of vulnerability (Hagenlocher et al., 2019; de 
Sherbinin et al., 2019). For the regional assessment in South Africa, composite 
indicators were developed according to the impacted sector: i) irrigated agriculture 
and ii) rainfed agriculture, considering a wide array of environmental, social, and 
economic indicators. 

Relevant indicators were identified through a combination of literature review and 
expert consultation. The review was conducted based on pre-defined search terms 
in Web of Science and Scopus. The selected articles (n = 17) were coded with 
MAXQDA software (VERBI Software 2019) to extract suitable indicators. Later, these 
indicators were compared and complemented with the ones identified by 
Hagenlocher et al. (2019) in their review of existing drought risk assessments, and 
within South Africa at a local municipality level by Walz et al. (2018) and a 
quaternary catchment level by Jordaan et al. (2017a, 2017b). In total, 44 suitable 
indicators for rainfed and irrigated systems in South Africa were identified. To assess 
which of those 44 indicators are the most relevant for representing vulnerability of 
these two systems towards drought, an online expert survey was conducted as a 
joint effort with the National Disaster Management Centre (NDMC) of South Africa. A 
total of 33 experts representing all provinces of South Africa participated in this 
survey. They selected 36 relevant indicators for irrigated systems and 40 for rainfed. 
These experts were from multiple sectors including academia (n=4), private sector 
(n=5), NGO (n=1), Government (n=20), international organizations (n=1) and others 
(n=2). 

Open-source data for the selected indicators was retrieved (e.g. Statistics from 
South Africa (STATS SA), National Treasury, World Bank) in order to ensure that the 
final results can be validated and reproduced in a different context - as 
recommended by Naumann et al. (2014). Following the methodological suggestions 
by Hagenlocher et al. (2018), Meza et al. (2020), Nauman et al. (2014), and OECD 
(2008), statistical operations were performed to prepare an indicator dataset to 
perform the vulnerability assessment: i.e., i) imputation of missing data, ii) normality 
test, iii) outlier detection and treatment, iv) multicollinearity assessment, v) 
normalization and vi) expert weighted aggregation.  

 After data acquisition and statistical data processing, 22 indicators were used to 
perform the vulnerability assessment for irrigated systems and 24 for rainfed. The 
selected vulnerability indicators were normalized to make them comparable. A linear 
min-max normalization was applied to create a range between 0 (lowest 
vulnerability) to 1 (highest vulnerability) (Beccari, 2016; Carrão et al., 2016). 

The final step to build the composite vulnerability index (CVI) for each agricultural 
system (irrigated and rainfed) was the weighted arithmetic aggregation for each 
vulnerability component (SOC-ENV_SUS and lack of COP) based on the normalised 
indicators (Zi) and the weights obtained from the expert survey (Wi). 
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      (8) 

1.8 Integration of hazard, exposure and vulnerability to drought risk 

The final drought risk index was calculated in the studies performed by 
GlobeDrought by multiplying the indices for drought hazard and exposure by 
vulnerability (Figures 9-11). At the pixel level, the presence of hazard and 
vulnerability point to a certain drought risk, independent of how much crop area is 
contained in the specific pixel. At the aggregated level, the different crop areas in the 
specific pixels must be considered; therefore exposure was calculated as harvested-
area weighted mean of the pixel-level hazard and then multiplied by vulnerability to 
calculate drought risk at the country level. 

 

 

Figure 10. The overall workflow of the drought risk assessment for agricultural 
systems performed at global scale (Fig. 1 in Meza et al., 2020) 
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Figure 11. The overall workflow of the drought risk assessment for agricultural 
systems performed at regional scale for South Africa (Fig. 2 in Meza et al., 2021) 

1.9 Validation of drought hazards and drought risk 

The outcomes of the risk assessment for irrigated and rainfed systems were 
compared against drought impact data from different sources, against drought 
hazard shown in local observational early warning systems, against anomalies in 
reported crop yields and against similar drought indices derived with independent 
data.  

Drought impact data were extracted from the international Emergency Events 
Database (EM-DAT) of the Centre for Research on the Epidemiology of 
Disasters (CRED). EM-DAT systematically collects reports of drought events and 
drought impacts from various sources, including UN agencies, NGOs, insurance 
companies, research institutes and press agencies. A drought event is registered in 
EM-DAT when at least one of the following criteria applies: 10 or more people are 
dead, 100 or more people are affected, or a declaration of a state of emergency or a 
call for international assistance is made. The number of drought events within the 
period 1980–2016 at country level and global extent was used as an input for the 
comparison (Meza et al., 2020).  

Drought hazard calculated in the GlobeDrought project was also compared against 
estimates derived from national drought information systems such as the US 
Drought Monitor (Schwarz et al., 2020) or of the Global Drought Observatory of the 
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European Commission. Hydrological drought hazard was evaluated using reported 
river discharge (Schumacher et al., 2018). 

Drought hazard for agricultural systems was compared against reported crop yields 
(Eyshi Rezaei et al., 2021; Meza et al., 2021). In regions with strong limitations in 
crop water supply a high correlation between the drought hazard indicators and yield 
anomalies should be expected with large negative yield anomalies in dry years. 

Finally, we also did cross-validations of drought hazard estimates from process 
based models with estimates for the same variable derived from remote sensing. For 
example, the ratio between AET and PET used to calculate drought hazard for 
rainfed crops derived from  process based models (Meza et al. 2020, 2021) is similar 
to the Evaporative Stress Index (ESI) computed from MODIS data (Ghazaryan et al., 
2020). Therefore, strong correlations between simulated and remotely sensed 
AET/PET ratios should be expected in particular for regions where vegetation growth 
is constrained by soil water availability and where we find large inter-annual 
variability in AET/PET ratios. 

2 Results of the drought risk analysis at global scale 

2.1 Hydrological drought hazard 

Seven innovative indicators for hydrological drought hazard were developed in this 
project. The streamflow drought hazard indicator ADQI-Q80,lfm is based on the 
widely used threshold-level method, but it implies a low-flow method that allows an 
existing drought to continue during a pre-defined low-flow season even if the 
threshold to terminate the drought (Q80) is exceeded. The rationale behind this 
approach is that people and the ecosystem cannot recover from a drought during the 
low-flow season if flow during this season is only a small percentage of total 
streamflow in each year. The indicator can add value in regions with high seasonal 
streamflow variability where people strongly rely on water storage in man-made 
reservoirs that needs to be replenished by streamflow. Moreover, two new water 
deficit indicators were developed, ADQI-WUs and ADQI-WUs-EFR that take into 
account mean monthly surface water use, and in case of the latter also mean 
monthly environmental flow requirements, EFR, which are assumed to be 80 % of 
mean monthly discharge. Finally, the new indicators QDAI and SMDAI combine the 
anomaly and deficit aspects of a drought for the variables streamflow and soil 
moisture. For the first time in a drought monitoring system, these indicators take into 
account that unusually low streamflow only translates into a high drought hazard if 
the water demand of people/biota cannot be satisfied. On the other hand, low 
streamflow anomalies can be perceived as strong drought hazard if they occur 
during periods of high water demand (see section 1.5.1 for details). Selected 
indicators (ADQI-Q50, ADQI-Q80, ADQI-Q80,lfm, SSI1, SSI12, QDAI and SMDAI) 
were made available through the Integrated Drought Tool. 

http://map3d.remote-sensing-solutions.de/globedrought/GlobeDroughtPortal/
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Figure 12. Frequency of occurrence (%) of mild (a), moderate (b), severe (c), 
extreme (d) or no (e) streamflow drought during the period 1981–2010 as defined by 
the indicator QDAI (Fig. 6 in Popat and Döll, 2021). Grid cells where for any calendar 
month there are at least 6 months with Qant =0 are indicated as int, and grid cells 
which are not computed due to land cover are indicated as nc 

We found that the large majority of the land surface is affected by streamflow 
drought (Figure 12). Mild and moderate droughts prevail in temperate and tropical 
climate while severe and extreme streamflow droughts occur more frequently in sub-
tropical climate. This has direct implications for the stability of the water supply in 
these regions because the indicator QDAI is not only accounting for streamflow 
anomalies but also for deficits (Popat and Döll, 2021). 

2.2 Drought hazard for agricultural systems 

2.2.1 Irrigated crop production systems 

High drought hazard for irrigated crops was calculated for most semi-arid regions 
characterized by large interannual variability in streamflow and irrigation requirement 
such as in the Western part of the US, Northeast Brazil, Argentina, Middle East, or 
Western India. However, drought risk for irrigated crops is also high in large parts of 
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Southern and Eastern Europe. Drought hazard for irrigated production systems is 
low for humid regions such as most tropical regions or regions with a low interannual 
variability in water resources and irrigation requirement such as Northern Africa and 
the Arabian Peninsula (Figure 13). Extended regions with high drought hazard were 
detected for each year in the observation period but spatial patterns differed a lot 
between the years. In many regions such as the Western part of the US or Western 
India multi-year droughts were detected (Appendix A1). 

 

Figure 13. Long-term drought hazard of irrigated crop production systems (Fig. 2b in 
Meza et al., 2020) 

2.2.2 Rainfed crop production systems 

A high long-term hazard indicating frequent drought events was detected for most 
arid and semi-arid regions such as Western US, North Mexico, Northest Brazil, 
Chile, Peru, Argentina, Southern Africa, Southern Russia, the Sahel-Zone, Central 
Asia, North India, North China Middle East and Australia (Figure 14). These are 
regions where irrigation is used at the large scale to reduce exposure to soil moisture 
droughts. However, not all farmers have access to irrigation infrastructure so that 
rainfed systems are frequently affected by drought. Spatial patterns of drought 
hazard for rainfed systems differ considerably between years but we also identified 
years in which most of the major agricultural production areas were affected by 
drought such as the years 2012, 1987, 2015, 2018 and 2002. In contrast, the major 
crop production regions were not or little affected by drought in years 1993, 1985, 
1997, 1996 and 1998 (Appendix A1). For severe drought events occurring in larger 
regions the drought hazard maps were validated by inspection of anomalies in 
production, net trade and supply of cereals, pulses and oilcrops (Appendix A4). The 
comparison shows that production declined considerably in most of the selected 
drought events compared to the two preceding and subsequent years. Net trade 
reduced mainly when drought was observed in major crop exporting regions such as 
Australia, although the effect always happened here in the year subsequent to the 
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drought. Sharp declines in food supply became visible in regions where subsistence 
farming is prevailing such as Southern Africa while in developed regions reduced 
production was buffered by storage or trade (Appendix A4). 

 

Figure 14. Long-term drought hazard of rainfed crop production systems (Fig. 3b in 
Meza et al., 2020) 

2.2.3 Remote sensing based hazard analyses for crop production in general 

The analysis of spatiotemporal patterns of drought and the relationship with yield 
anomalies at global scale showed that all three tested indicators (NDVI, LST and 
ESI) were correlated with negative yield anomalies (Figure 15). All indices could 
identify past drought events, such as the drought in the USA in 2012, Eastern Africa 
in 2016–2017, and South Africa in 2015–2016 (Ghazaryan et al., 2020). Anomalies 
in the ESI had higher correlations with maize and wheat yield anomalies than other 
indices (Figure 15). This finding is in particular relevant because the index ESI is 
similar to the drought hazard indicator for rainfed crop production systems used in 
the modeling studies (see previous section) and both indices can easily be translated 
into each other. Therefore the underlying AET / PET ratio was identified as powerful 
indicator for agricultural drought which can be obtained by modeling and remote 
sensing and therefore be used in  studies combing modeling with remote sensing or 
to compare the results. The area affected by reduced AET / PET was mapped at 
global scale but a separation of irrigated and rainfed cropland could not be made 
because time series of irrigated and rainfed crop shares have not been available. 
However, such a comparison was possible for the US (Iowa) and South Africa (Free 
State Province) and showed that in many years a reduced ESI was found for both, 
rainfed and irrigated pixels. This points to constraints in water supply for irrigated 
fields resulting in deficit irrigation or even rainfed cultivation in years of severe 
hydrological drought. (Ghazaryan et al., 2020). 



                       Final report –  2 Results of the drought risk analysis at global scale 

Seite 53 von 154 
 

 

Figure 15. Pearson’s correlation coefficient (r) estimated for a maize yield anomaly 
(based on gridded yield data) with land surface temperature (LST), evaporative 
stress index (ESI), and normalized difference vegetation index (NDVI) anomalies 
(peak of the growing season) (Fig. 2a in Ghazaryan et al., 2020) 

The duration of droughts (in months) was also analyzed based on anomalies in the 
ESI (Figure 16). The spatial patterns in the duration of EVI-anomalies agree quite 
well with the patterns in drought hazard for rainfed and irrigated sytems derived by 
modeling (Figures 13, 14). 
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Figure 16. Maximum number of consecutive months with the ESI anomaly <−1 in 
the period 2001-2017 (non-cropland areas are masked based on the MODIS land 
cover, Fig. 4a in Ghazaryan et al., 2020) 

2.2.4 Comparison of simulated and remotely sensed drought hazard 

The comparison of the crop drought indicator for rainfed crops simulated with GCWM 
to the indicator derived from MODIS satellite imagery for period 2001-2019 showed a 
high agreement (r > 0.5) for all the regions with a high long-term drought hazard 
(Figures 14, 17). In contrast, correlations were low in humid or tropical regions such 
as West Africa, the Amazon basin, Southeast Asia or Northern Russia (Figure 17). 
The reason for the low agreement in these humid regions is the low inter-annual 
variability of the drought index making high positive correlations less likely. 

 

Figure 17. Pearson’s correlation coefficient between the crop drought indicator (CDI) 
for rainfed crops simulated with the Global Crop Water Model and MODIS-based 
CDI for period 2001-2019 
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2.3 Exposure to drought 

Exposure to drought was analyzed by aggregating pixel level harvested area 
weighted mean drought hazard to country level (Meza et al., 2020). The analysis 
shows that regions with low exposure of rainfed and irrigated crops to drought tend 
to be tropical and subarctic regions following the Köppen–Geiger climate 
classification (1980–2016; Beck et al., 2018). There are significant regional 
differences when comparing irrigated and rainfed drought exposure. Rainfed crops in 
Southern Africa are highly exposed to drought while the exposure of irrigated crops 
is relatively low (Figure 18). In contrast, exposure of irrigated crops to drought is 
higher than the one of rainfed crops in countries such as Iran, Turkey, China and 
Australia (Figure 18). A reason might be that these are large countries in which 
irrigated crops grow in the more arid regions which are more frequently affected by 
drought. Countries with high exposure for both, rainfed and irrigated crop production 
systems are the US, Australia, Iran, Syria and Pakistan. In contrast, low exposure for 
both, rainfed and irrigated crop production systems were found for countries in 
tropical West Africa (Central African Republic, Gabun, Congo, Liberia, Sierra Leone 
Guinea and Guinea-Bissau), Colombia, Norway, Myanmar and Laos (Figure 18). 

 

 
Figure 18. Exposure to drought for irrigated (top) and rainfed (bottom) agricultural 
systems in period 1981-2016 (Fig. 4 in Meza et al., 2020) 
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2.4 Vulnerability of agricultural systems to drought 

Countries with particular high vulnerability to drought were detected mainly in sub-
saharan Africa (Mali, Niger, Chad, Sudan, Central African Republic, Congo DR, 
Angola, Mosambique, Zimbabwe and Madagascar), Asia (Iraq, Yemen, Afghanistan, 
Myanmar) and Latin America (Paraguay) while vulnerability to drought was low in 
developed countries such as the US, Canada, Western Europe, Australia but also in 
China (Figure 19). There were cases where countries such as Namibia presented 
high socioecological susceptibility in contrast with high coping capacity, reducing its 
overall vulnerability. The drought risk in countries such as Lesotho and Mauritania 
that have, in contrast, limited coping capacities is notably higher (Meza et al., 2020).  

 

Figure 19. Vulnerability to drought for irrigated and rainfed agricultural systems in 
period 1981-2016 (Fig. 3c in Meza et al., 2020) 

2.5 Drought risk of agricultural systems 

2.5.1 Drought risk for irrigated systems 

The drought risk for irrigated agricultural systems varies significantly among 
continents and countries. Especially large countries such as the USA, Brazil, China 
and Australia show a high variation at the country level due to varying climatic 
conditions. Drought hazard and exposure was highest in regions with a high density 
of irrigated land and high irrigation water requirements such as the western part of 
the USA, central Asia, northern India, northern China and southern Australia. 
Vulnerability was high particularly in sub-Saharan Africa but also in some countries 
in central Asia and the Middle East and low in general for industrialized and high-
income countries. The combination of hazard and vulnerability to risk resulted in the 
highest values for large parts of western, central and southern Asia; eastern Africa; 
and the eastern part of Brazil. Low-risk areas include western Europe, the USA, 
Australia, New Zealand and most parts of China (Figure 20). 
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Figure 20. Drought risk for irrigated agricultural systems in period 1981-2016 (Fig. 
2a in Meza et al., 2020) 

2.5.2 Drought risk for rainfed systems 

High levels of risk (dark yellow to red color scheme) for rainfed agricultural systems 
are observed in southern Africa, in southeastern Europe, in northern Mexico, in 
northeastern Brazil, at the western coast of South America, in southern Russia and 
in western Asia (Figure 21). Although drought hazard and exposure were high in the 
US and Australia (Figures 14, 18) the drought risk is relatively low (Figure 21) 
because of the low vulnerability (Figure 19). Drought risk is also low in general in 
Western Europe, Southeast Asia and in the humid tropics (Figure 21).  

 

Figure 21. Drought risk for rainfed agricultural systems in period 1981-2016 (Fig. 3a 
in Meza et al., 2020) 

2.5.3 Drought risk for agricultural systems (irrigated and rainfed combined) 

Although the drought hazard was computed differently for the different agricultural 
systems, the countries with high risk of drought to both farming systems are 
Botswana, Namibia and Zimbabwe (Figure 22). These countries share the same 
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relevant indicators that define their high vulnerability: a high soil and land 
degradation rate, a low literacy rate and low total renewable water in combination 
with high drought hazard and exposure. In addition, high total risk was computed for 
countries in Northern Africa (Morocco, Algeria, Niger, Lybia and Tunesia), Asia (Iran, 
Afghanistan; Mongolia, Kazakhstan) and for the Russian Federation (Figure 22). The 
attempt to calculate hazard, exposure and risk for the whole crop production sector 
by assigning a similar weight to the hazard exposures for rainfed and irrigated 
systems must be viewed critically, and results should be analyzed with care. A 
potential way to derive specific weights for rainfed and irrigated exposure could be 
validating not only calculated hazard and exposure but also vulnerability and risk, 
with information about drought impacts separately, for both irrigated and rainfed 
systems (Meza et al., 2020). Such an attempt has been made recently yielding 
indicators for vulnerability to drought separately for irrigated and rainfed systems and 
distinguishing different years (Appendix A2). 

 

Figure 22. Drought risk for crop production systems (irrigated and rainfed combined) 
in period 1981-2016 (Fig. 4a in Meza et al., 2020) 
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3 Results of the drought risk analysis for regional case studies 

3.1 South Africa 

South Africa is located in the southern part of Africa, spreading over 122 million ha 
with approximately 12% croplands (FAO, 2020a). The country is composed of nine 
provinces and has a wide range of climates from arid to subtropical, temperate, and 
mediterranean (Figure 23). About 91% of South African territory is arid or semi-arid, 
with only 10% of the land generating half of the annual run-off (Le Maitre, 2018). The 
country has uneven rainfall distribution with a mean annual rainfall of 550 mm and 
annual mean temperature of 18°C (FAO, 2020a). The potential annual mean 
evaporation for the whole country is about three times greater than its annual rainfall, 
1800mm per year (WWF, 2018). 

The agricultural economy comprises technically developed commercial farming on 
the one hand and more subsistence-based production in the remote rural areas on 
the other hand (Waldner et al., 2017). The dominant activities include: i) intensive 
crop production and mixed farming in areas characterised by winter and summer 
rainfall, ii) cattle ranching in the bushveld and iii) sheep farming in the arid regions 
(Waldner et al., 2017). Climate--soil combinations leave only 12% of the country 
suitable for crop production; of which 22% is considered as high potential land in 
terms of production capacity (Waldner et al., 2017; WWF, 2018). In general, rainfed 
agriculture prevails in South Africa, accounting for the majority of the harvested area 
(Fig. 1) (Hardy et al., 2011). This means that only 1.35 million ha (8.5%) of the 
potentially arable land is irrigated (DAFF 2019). Nevertheless, irrigated agriculture 
contributes 30% to agricultural production (FAO, 2020c). Irrigation systems in South 
Africa can be permanent, supplementary, or occasional. Most commercial irrigation 
occurs across large river basins (e.g. Orange, Lower Vaal, Fish) and in the Western 
Cape region (FAO, 2016).  

South Africa has been frequently affected by droughts in the last four decades. Major 
drought periods include 1982-1984, 1991-1992, 1994-1995, 2004-2005, 2008-2009, 
2015-2016, and the most recent in 2018-2020 (Mahlalela et al., 2020; FAO, 2019; 
Walz et al., 2020, Unganai et al., 1998). During those years, drought not only 
impacted the environment, but also the social and the economic systems. The 1992 
drought affected around 250,000 people, with an estimated 50,000 jobs losses in the 
agriculture sector, and 20,000 additional jobs losses in related sectors (AFRA, 1993). 
In 2007-2008, the South African government spent over R285 million (19 million US 
dollars) on drought relief measures for the agricultural sector, primarily on the 
purchase and supply of subsidised fodder depending on farms’ sizes (Ngaka, 2012). 
Recent droughts such as the one in 2015-2016 revealed the cascading impacts of 
the drought. The BFAP (2016) reported that the area of maize planted for the 2016-
17 season was 25% lower than the area planted in the 2015-16 season, which was 
reflected in the year-on-year declines in seasonally adjusted sectoral GDP. In 
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addition to the direct impact on agriculture, general economic indicators pointed to 
an aggravated situation (e.g. input providers were hard hit due to the lack of 
purchasing power in the agricultural sector; given the suppliers´ import propensity 
and the local currency depreciation (BFAP, 2016). Inflationary pressures resulting, 
inter alia, from drastic increases in food prices drove up interest rates, which had a 
negative effect on farming enterprises' debt servicing costs and further restricted 
access to credit in the sector (BFAP, 2016).  

  

Figure 23. South Africa: a) Köppen-Geiger climate classification map for South 
Africa (1980-2006) (Beck et al., 2018). b) South African provinces. c) and d) Rainfed 
and irrigated areas per municipality, respectively. e) Ratio between irrigated and total 
agricultural area per municipality. f) Irrigated and rainfed agriculture in South Africa 
at pixel level. Maps are based on data from the national land use/land cover dataset 
2018 (Thompson, 2019). (Fig. 1 in Meza et al., 2021) 
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3.1.1 Drought hazard and exposure 

Our results demonstrate a large variability in drought hazard and exposure among 
provinces and local municipalities. The most extreme drought hazard/exposure for 
rainfed conditions is observed in the North Cape, North West and Limpopo provinces 
during the study period (Figure 24). On the other hand, the lowest hazard and 
exposure in the period 1981-2018 is computed for Kwazulu province (Figure 24). 
Western and central parts of Eastern Cape and Mpumalanga provinces also have a 
low level of rainfed drought hazard/exposure (Figure 24). The time series analysis of 
drought hazard and exposure showed that 1992 and 2016 were the driest years 
during the study period under rainfed conditions (Figure 25). The year 2000 and 
2006 are classified as wettest years across South Africa (Fig. 25). The frequency of 
dry years for rainfed systems remarkably increased after year 2010 (Meza et al., 
2021). 

In general, the irrigated systems are less often affected by drought than rainfed 
systems, with larger areas exposed to drought in Limpopo and Estern Cape 
provinces of South Africa (Figure 24). These areas have semi-arid to arid climates 
and are characterised with less annual precipitation than the rainfed growing areas 
of the country. For irrigated croplands, larger areas were affected by drought 

 

Figure 24. Drought hazard and combined hazard/exposure for rainfed (top row) and 
irrigated (bottom row) cropping systems across South Africa at grid and local 
municipality levels in the period 1981-2018. Black lines indicate provincial 
boundaries (Fig. 3 in Meza et al., 2021) 
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hazard/exposure since 2012, even in areas that have low share of irrigated 
croplands, such as north western municipalities in the Northern Cape (Figures 24 
and 26). Despite smaller areas of hazard/exposed irrigated land compared to rainfed 
areas, the impacts can be significant due to the number of affected people. Roughly 
about 230,000 irrigation farmers were affected, mostly smallholders often with very 
small plots for self-consumption (FAO, 2016). The highest hazard/exposure was 
found in years 2015-2016 and the lowest in year 2001 (Figure 26). 

The accuracy of simulated hazard/exposure for rainfed agricultural systems was 
tested by comparing modelling outputs with remotely sensed exposure data in the 
period 2001-2018 (Figure 27). There was a strong correlation (0.5 to 0.9) between 
remotely sensed and simulated drought exposure for rainfed conditions for most of 
the municipalities across South Africa. The lowest correlation (0 to 0.2) was obtained 
in a limited number of municipalities mainly in KwaZulu-Natal and Eastern Cape 
provinces, which are largely covered by natural grasslands. The annual drought 
signal obtained by remote sensing may therefore deviate considerably from the 
conditions in the cropping period considered in the model. 

 

 

Figure 25. Drought hazard/exposure for rainfed cropping systems across local 
municipalities of South Africa in the period 1981-2018. Black lines indicate provincial 
boundaries (Fig. 4 in Meza et al., 2021) 
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Figure 26. Drought hazard/exposure for the irrigated cropping system across local 
municipalities of South Africa for the period 1981-2018. Black lines indicate 
provincial boundaries (Fig. 5 in Meza et al., 2021) 

 

Figure 27. Correlation coefficient between drought exposure of rainfed systems 
obtained by modeling and remote sensing (Fig. 6 in Meza et al., 2021) 
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Moreover, we assessed the relationships between annual drought exposure 
simulated for rainfed systems and yield/production reported at the country scale 
(FAO, 2021). The correlation coefficient among simulated drought exposure and 
reported yield and production were -0.32 and -0.41, respectively (Figure 28) which 
means that drought resulted in lower yields and production. The model reproduced 
the drought for the years (1992-2015-2016) which showed the largest 
yield/production reduction. It is important to note that the FAO yield/production data 
did not distinguish between rainfed and irrigated systems. Therefore we expected 
even higher correlations when separate data would become available.  

Drought hazard for combined (irrigated and rainfed) agriculture was also determined 
by using remote sensing (Schwarz et al., 2020). Drought hazard was estimated 
based on a regression model which included the variables albedo, LST, NDII, NDVI 

 

 

Figure 28. Time series of rainfed drought hazard (positive values indicate drought) 
and cereal yield and production anomaly in South Africa in the period 1981 to 2018. 
The r values show the Pearson correlation coefficient (Fig. S6 in Meza et al., 2021) 
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and SPI3. The high resolution remote sensing based estimate (Figure 29) shows 
good agreement with the model based estimates (Figures 25, 26) for the relatively 
wet year 2014 and the dry season 2015-2016. 

 

Figure 29. Drought hazard in South Africa for agricultural, grass- and shrubland in 
the nondrought season 2013/2014 (left) and the drought season 2015/2016 (right, 
Fig. 3 in Schwarz et al., 2020) 
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3.1.2 Vulnerability and risk of rainfed and irrigated systems 

The vulnerability assessment shows heterogeneity across the country (Figure 30) for 
both systems. Our assessment highlights that crops under rainfed systems are more 
vulnerable to drought than irrigated systems.  

According to the expert consultations, the most relevant vulnerability indicator for 
irrigated systems is unemployment rate (%). This is also recognized as a relevant 
indicator by the scientific community in the South African context as the country 
suffers from deep structural unemployment having a direct impact on poverty levels 
(Chibba and Luiz, 2011). Agriculture proved to be the best way to reduce rural 
poverty according to the rural development literature, besides, in most developing 
countries, agriculture and agriculture-related activities provide most of the rural 
employment (Machethe, 2004). Irrigation schemes have had great impact in South 
Africa, not only in food production but also alleviating poverty. One notable example 
is the one caused by the Great Depression by resettling of returning soldiers that 
reduced the unemployment rate in the country (FAO, 2016). Irrigated agriculture 
employs between 10% and 15% of the total agricultural workforce (DWA, 2002). 

The most relevant indicators for rainfed systems according to the experts are: area 
equipped for irrigation expressed as percentage of total area, and households with 
an alternative to farm income (%). Access to irrigation infrastructure can help farmers 
increase their coping capacities to drought since due to rapid climate change, 
irregular rainfall patterns and water shortages are becoming a common issue 
(Asadieh and Krakauer, 2017; Trenberth et al., 2014). Irrigation infrastructure 
systems can allow crops to be uniformly supplied with water according to their 
needs. Despite the advantages of irrigation systems, in South Africa, the expansion 
of irrigation systems is limited by water availability (FAO, 2016). Furthermore, 
irrigation schemes have performed poorly. Poor performance mainly resulted from 
inefficient and non functioning infrastructure, inappropriate planning and design, 
insufficiency of training to raise awareness, improper land tenure arrangements, and 
the lack of both input and output markets (Machethe, 2004; Gidi, 2013; Fanadzo et 
al., 2010). The ability to irrigate at least parts of the land can stabilize farm income in 
drought periods and thereby also reduce the vulnerability of the rainfed sector. Low 
harvests threaten the households that only depend on their farm income (~97%); this 
could result from a drought period that requires compromising their entire livelihoods. 
Having an alternative income may increase their coping capacities as they do not 
depend solely on the agricultural income derived from crop sales (Meza et al., 2021). 

The vulnerability maps display high values particularly on irrigated systems for the 
Western Cape municipalities and for rainfed agricultural systems in KwaZulu-Natal. 
Our findings underline that determining factors of vulnerability vary depending on the 
sector which is susceptible to the negative impacts of drought. For instance, the 
main indicators which shape the vulnerability for irrigated systems and are potential 
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entry points for the drought risk reduction is the lack of environmental awareness, 
poor water quality, and low total dam storage capacity. In the South African context 
this is due to the limited access to extension services (e.g geographically remote 
farmers tend to have little network coverage), and very limited financial resources to 
invest in technologies or utilities (Meza et al., 2021). Resulting in a lack of 
accessible, relevant, and practical information to share, as well as few or no 
opportunities to expand the irrigation farmers capacities (FAO, 2020b). 

For rainfed agricultural systems, the key indicators shaping the socio-environmental 
susceptibility and the coping capacities of the local municipalities are the small 
fertilizer application rate, the lack of area equipped for irrigation, and land 
degradation. This last indicator is relevant for both systems; land degradation is 
linked to different factors in the context of agricultural systems in South Africa, one of 
them is the lack of environmental awareness led to unsustainable farming practices 
(Rotheret al., 2008; Schulze, 2016). 

The drought risk assessment highlights its context-specificity and how different 
communities of a country experience different levels of risk. Drought risk varies 
substantially for rainfed and irrigated systems (Figure 30). There is a high-risk 
  

 

Figure 30. Drought vulnerability and risk in South Africa at local municipality level for 
rainfed (top row) and irrigated agriculture (bottom row). Tendency to dark blue shows 
lower levels of vulnerability and risk, the tendency to red shows higher vulnerability 
or risk values. Black lines indicate provincial boundaries (Fig. 7 in Meza et al., 2021) 
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pattern towards the North provinces for rainfed agricultural systems. Meanwhile, 
high-risk hotspots for irrigated agricultural systems can be found in some local 
municipalities of KwaZulu-Natal (e.g. uMhlathuze, Endumeni local municipalities), 
Western Cape (e.g. Overstrand, Swellendam) and Gauteng (e.g. Midvaal) provinces 
(Meza et al., 2021). 

When analysing the risk for rainfed systems, among the local municipalities in the 
Northern Cape, Emthanjeni has the lowest risk score than other provinces despite its 
high hazard and exposure levels; it is explained by a lower social susceptibility (e.g. 
overall quality of water services, less population have experienced crime and theft of 
livestock), and higher coping capacities (e.g. access to credits). In contrast, the local 
municipality of Raymond Mhlaba in the Eastern Cape has lower vulnerability than 
other provinces, but its high hazard and exposure scores result in a high risk.  

In order to identify priority areas for disaster risk management, the risk assessment 
of each agricultural system was plotted against the crop dependent population in 
each local municipality (Figure 31). The comparison shows that the local 
municipalities with higher irrigated and rainfed systems are not among the highest in 
terms of crop dependent population. The city of Johannesburg presents a higher 
crop dependency, but also has high risk for both systems. Its drought hazard and 
exposure are high, and the vulnerability analysis reveals that their lack of 
environmental awareness, fertilization rate and land degradation are key factors 
contributing to their overall very high risk; highlighting the relevance to take actions in 
this municipality. Johannesburg, the largest city in South Africa, is facing enormous 
challenges which reflect on the drought vulnerability level. Challenges like 
urbanisation’s impact on the soil and water quality and availability, and facing non-
sustainable growth paths (SACN, 2016) have significant impacts on the magnitude of 
Johannesburg’s vulnerability toward drought. 

In contrast, the city of Tshwane has a high number of crop dependent population, but 
it presents a medium rainfed risk and very low irrigated risk. Its medium risk is 
explained by its medium-low i vulnerability as a result of better performance in 
nutrition level, good water quality and road density, among others.  

The Northern-Cape province has the lowest population dependent on crops. 
However, it is one of the provinces with more local municipalities on high rainfed risk, 
as this province has arid climate which exposes rainfed crops to high drought 
hazard. In contrast, the KwaZulu-Natal province has a higher amount of population 
dependent on crops, but more local municipalities are at high risk for irrigated 
systems (Meza et al., 2021). 
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Figure 31. Local municipalities contrasted with drought risk for rainfed (x axis) and 
irrigated (y axis) systems. The size of the bubbles represent the amount of crop 
dependent population by local municipality (Fig. 8 in Meza et al., 2021) 

 

3.2 Zimbabwe 

Zimbabwe is among the countries in southern Africa that are heavily affected by 
droughts (Figures 20-22). Agriculture accounts for approximately 12% of the 
country’s Gross Domestic Product (GDP) (World Bank, 2020). About 70% of the 
population directly depends on agricultural outputs (UN Zimbabwe, 2020), and more 
than 60% conducts rainfed subsistence and semisubsistence agriculture (Makaudze 
and Miranda, 2010). Since recent information on the extent of irrigated and rainfed 
cropland has not been available for Zimbabwe, an assessment based on optimizing 
harmonic functions fitted to cloudcorrected Landsat NDVI time-series was performed 
for period 2013-2018 by the GlobeDrought project (Landmann et al., 2019). The 
result of the assessment shows that rainfed cropland is found scattered across the 
whole country while irrigated agriculture is concentrated in the North and the 
Southeast of the country (Figure 32). The dataset classifying irrigated and rainfed 
cropland, was then used in subsequent drought risk studies for Zimbabwe (Frischen 
et al., 2020; Schwarz et al., 2020). These drought risk studies mainly used remote 
sensing to detect drought hazard but additional socio-economic information to 
specify vulnerability and risk. In Frischen et al. (2020) a comprehensive vulnerability 
assessment was performed which included 32 indicators identified by an extensive 
literature review. 
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Figure 32. Farming systems map for Zimbabwe showing irrigated and rainfed 
cropland in period 2013-2018 (Fig. 4 in Landmann et al., 2019) 

3.2.1 Drought hazard and exposure 

The seasons 1991-1992, 1994-1995, 2002-2003 and 2015-2016 were identified as 
periods with extreme drought hazard (Frischen et al., 2020; Figure 33). The five 
districts with the highest average number of drought events were Beitbridge (7.05 
droughts in 30 years), Hwange (6.91), Bulilima (6.90), Buhera (6.84), and Tsholotsho 
(6.70). The five districts with the lowest average of drought events were Mutasa 
(1.99), Zaka (2.36), Morondera (2.69), Wedza (2.74), and Nyanga (2.89) (Figure 34). 
At provincial level, Matabeleland South and Matabeleland North indicated the 
highest average of drought events, followed by the Midlands Province, Mashonaland 
West, Mashonaland Central, and Manicaland. Masvingo and Mashonaland East 
have the lowest average of drought events (Frischen et al., 2020). The high drought 
hazard in season 2015-2016 and the low hazard in season 2013-2014 was 
confirmed in the drought assessment performed for Zimbabwe based on albedo, 
LST, NDII, NDVI and SPI3 (Schwarz et al., 2020; Figure 35). 
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Figure 33. Seasonal vegetation health index (VHI) composites (1989–2019) based 
on NOAA AVHRR and VIIRS data used to identify drought hazard for agricultural 
systems in Zimbabwe (Fig. 3 in Frischen et al., 2020) 

 

Figure 34. Average number of drought years during 1989–2019 for agricultural 
systems in Zimbabwe at district level (Fig. 4 in Frischen et al., 2020) 
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Figure 35. Drought hazard in Zimbabwe for agricultural, grass- and shrubland in the 
nondrought year 2013/2014 (left) and the drought year 2015/2016 (right; Fig. 4 in 
Schwarz et al., 2020) 
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3.2.2. Drought vulnerability and drought risk 

A very detailed and comprehensive drought vulnerability assessmentbased on 32 
different indicators derived from the literature was performed for Zimbabwe (Frischen 
et al., 2020). The result shows a diverse vulnerability pattern at district level but a 
consistent gradient from high vulnerability in the Southwest to low vulnerability in the 
Northeast at province level (Figure 36). Low vulnerability was particularly observed in 
Manicaland, which also performs comparably well in all social indicators. 
Contrastingly, provinces with high vulnerability scores are Matabeleland South, 
Matabeleland North, and Masvingo (Figure 36). These provinces are characterized 
by remoteness, with a bad state of public infrastructure including transportation, 
electricity, and sanitation and health facilities. The provinces additionally indicate a 
high state of land degradation and limited natural vegetation cover, given the low 
annual rainfalls (Frischen et al., 2020). 

An index for drought risk in irrigated and rainfed agriculture was then derived by 
multiplying, at pixel level, the indices for hazard/exposure by vulnerability (Figure 
37). The highest drought risk for irrigated systems agricultural systems is observed in 
Chipinge, whereas a high drought risk to rainfed agriculture occurs in multiple  

 

Figure 36. Vulnerability of agricultural systems in Zimbabwe to drought per district 
(left) and province (right, bottom). Province boundaries and province names are 
shown in the map top right (Fig. 6 in Frischen et al., 2020) 
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Figure 37. Drought risk of agricultural systems in Zimbabwe (left) and separation 
into drought risk for rainfed agriculture (top right) and irrigated agriculture (bottom 
right; Fig. 7 in Frischen et al., 2020) 

districts, including Buhera (Manicaland), Mount Darwin (Mashonaland Central), 
Gokwe South (Midlands), Beitbridge, Gwanda, Matobe, and Mangwe (Matabeleland 
South). Mashonaland East and Manicaland are generally less at risk to severe and 
extreme drought. Beitbridge and Bulilima indicate the highest risk of severe 
droughts. Mangwe, Matobo, Gwanda, Mwenezi, and Chiredzi show the highest risk 
to extreme drought (Frischen et al., 2020). 

The drought assessment performed by Schwarz et al. (2020) for the seasons 2013-
2014 and 2015-2016 detects a bit different spatial patterns of drought risk with high 
risk in the Northeast and low risk in the Southwest of Zimbabwe (Figure 38). 
Reasons for the differences are the specific drought hazard pattern in season 2015-
2016 (see also Figures 33 and 35) and the different results of the vulnerability 
assessment (Figures 36 and 38). Instead of 32 vulnerability indicators considered by 
Frischen et al. (2020), the study undertaken for seasons 2013-2016 used only four 
vulnerability indicators, namely population density, GDP, livestock density and 
irrigation (Figure 9). This shows that a careful selection of indicators is esstential to 
identify reasonable spatial patterns in drought vulnerability. 
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Figure 38. Spatial explicit drought hazard, vulnerability and risk for South Africa and 
Zimbabwe (exemplary) for the growing seasons December to March 2013/14 (non-
drought period) and 2015/16 (drought period), respectively (Fig. 6 in Schwarz et al., 
2020) 
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4 Experimental early warning and forecasting 
To expand the GlobeDrought information system by an early warning component, 
several modifications had to be made to the models used in GlobeDrought to provide 
real time estimates and seasonal forecasts of drought hazard. Most importantly, the 
climate input data for the models used before only covered the period until year 2016 
and could therefore not be used for simulations of the near realtime drought hazard. 
In the first phase of the project GCWM was forced with CRU-TS 3.25 climate input 
(Harris et al., 2014) while WaterGAP used WFDEI-GPCC (Weedon et al., 2014). The 
global assessment of historical drought hazard (Meza et al., 2020) was performed 
with this climate input. These climate input data have been replaced by ERA5 global 
reanalysis data (Hersbach et al., 2020) in both models. The data become updated 
frequently and allow therefore simulations in almost real time. A workflow was 
developed to download the variables required by the two models and to aggregate 
the data from hourly to daily time steps. Consequently, the models had to be 
adjusted to work with climate data at native daily time steps. Some assessments 
performed in the second phase of the project (e.g. Meza et al., 2021) have already 
been based on this new climate input and on the improved model versions. 

To enable seasonal forecast simulations of drought hazard, a workflow was 
developed in collaboration with the GRoW SaWaM project (KIT RKH Garmisch, Prof. 
Kunstmann) to analyze drought hazard simulated with global bias-corrected 
seasonal climate forecasts. The data provided by KIT RKH consisted of forecasts 
spanning 7 months with daily time steps and included data for 51 ensemble 
members. These data were used to simulate actual and potential evapotranspiration 
of rainfed crops (GCWM), irrigation water requirement of irrigated crops (GCWM) 
and streamflow (WaterGAP) for each of the ensemble members. Then the drought 
hazard indicators for rainfed and irrigated agricultural systems (Meza et al., 2021) 
were calculated. To demonstrate the workflow and to evaluate the results, 
simulations were performed by using ensemble forecasts released beginning of 
March 2018 (covering the period March 2018 – September 2018) and beginning of 
May 2018 (covering the period May 2018 – November 2018). Then the results were 
compared to model runs performed with the standard ERA5 reanalysis product for 
year 2018, which was considered as the reference. In addition, the results of the 
ensemble forecasts were compared to simulations based on the climatology. Here, 
the models used the standard ERA5 climate input until the begin of the forecast 
period (01 March 2018 or 01 May 2018) and switched then to climate input from a 
historical year. The 30-year historical period 1986-2015 has been used as input for 
the model simulations based on the climatology, resulting in 30 ensemble members 
for the climatology runs. 

Accoring to the simulations with the standard ERA5 data for year 2018 high drought 
hazard for rainfed crop production was detected for Western Europe, Central 
Europe, Eastern Europe, Southern Russia, Southern Canada, Australia and 
Argentina while very low hazard was observed for Southern Europe and the Eastern 
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part of the USA (Appendix A1). For irrigated crop production systems, high drought 
hazard was detected for Southwestern USA, Northeast Brazil, Southern China, the 
Middle East region, Australia and Argentina while in particular low hazard was 
calculated for Eastern USA, Europe, India, Southeast Asia and Western Africa 
(Appendix A1). The results of the model runs with ensemble forecasts (ENS) was 
therefore compared to the results with the climatology (HIS) and the model run with  

 

Figure 39. Comparison of the drought hazard indicator for rainfed crops simulated 
with ensemble climate forecasts (ENS) and historical climate in period 1986-2015 
(HIS) for the forecast period March 2018 – September 2018 with results obtained 
from the standard model run with ERA5 data for 2018 (black bold line) for selected 
countries 
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standard ERA5 data for 2018 for selected countries affected by drought (Argentina, 
Australia, Canada, Germany, Russia) and for countries with relatively wet conditions 
in year 2018 (Italy, Spain).  

The results of the comparison show that the model simulations using the bias 
corrected ensemble forecasts reproduced the reference hazard better than the 
model runs with the climatology for Argentina, Australia, Italy and Spain. In contrast, 
the forecasts could not reproduce the severe drought in Germany in both cases, 
model runs with ensemble forecasts and model runs with climatology (Figures 39, 
40). The results show clearly that bias corrected seasonal ensemble forecasts have 
a huge potential to improve seasonal drought forecasts of soil moisture and 
streamflow and related drought hazard indicators. However, more research is 
needed to evaluate this potential more systematically across time periods, regions, 
drought indicators and the forecast length and to improve the efficiency of the 
forecasting system to reduce processing time before such systems maybe used in 
operational mode.  

 

 

Figure 40. Comparison of the drought hazard indicator for irrigated crops simulated 
with ensemble climate forecasts (ENS) and historical climate in period 1986-2015 
(HIS) for the forecast period March 2018 – September 2018 with results obtained 
from the standard model runs with ERA5 data for 2018 (black bold line) for selected 
countries 
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5 Dissemination of results and knowledge to the general public 

5.1 Development of the Integrated Drought Tool 

To visualize the datasets for drought hazard, vulnerability and risk created in the 
project GlobeDrought developed the Integrated Drought Tool (Figure 41). The portal 
provides access to more than 26 geospatial data sets and can be used for 
visualization and displaying statistics. Users can select the scale of the drought 
assessment (global, South Africa, Zimbabwe) and the sector affected by drought 
(irrigated agriculture, rainfed agriculture, water supply). According to the selections 
made by the users, corresponding indicators for drought hazard, exposure, 
vulnerability, risk or impact are displayed and can be selected. For each of the 
indicators available in the drought information system, metadata explaining data 
sources and methods used to compute the indicators can be displayed (Figure 41). 

The portal was introduced to various stakeholders, specifically in Zimbabwe, in order 
to validate products and get feedback to its usability. One main outreach and 
stakeholder activity was the stakeholder workshop in Zimbabwe, which was 
facilitated online (Figure 42). The survey results from this workshop showed that the 
portal is considered to be utmostly useful for a number of use cases in the region, 
foremostly food security mitigation measures and to support finance-based 
forecasting. Future commercialization opportunities were assessed through 
discussions with insurance companies (e.g. Hagelschaden), German Helmholtz 
Research Centers (GFZ and UFZ) and numerous agri-business conglomerates in 
Brazil (sugar cane and palm oil processing companies). 

 

Figure 41. The portal interface showing the indicator Accumulated Drought Severity, 
which is a hazard indicator which can be seen from the left panel. The panel 
furthermore shows that is dat set is a Global’ data set and relevant for rainfed 
agriculture 

http://map3d.remote-sensing-solutions.de/globedrought/GlobeDroughtPortal/
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It is anticipated to develop a commercially viable integrated drought service for an 
array of customers in the future. In the Zimbabwe stakeholder workshop, the 
usefulness of the portal for decision makers was assessed and the result (Figure 43) 
clearly illustrates an above average rating for all three criteria. 

 

 

Figure 42.  Participants overview of the online Zimbabwe stakeholder meeting, 
facilitated in September 2020 

 

Figure 43. Stakeholders’ survey results on the usefulness of the Globe Drought 
portal that was developed in this sub project. The criteria ‘usefulness for decision 
makers’ attained the highest score (4.8) 
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5.2 Knowledge dissemination by webinars and electronic lectures 

The GlobeDrought Learning Platform (Figure 44) was set up and deployed in 2018 
with capabilities to manage learners, course content, discussions, assessment, and 
certification. It was later configured with learning blocks according to the developed 
learning strategy. By the end of the project, over 600 people had signed up to the 
platform. The Learning Platform provides access to online courses (Table 2) and to 
webinars developed and recorded during the project time. All webinars were 
announced on the website and through the newsletter. They were integrated in the 
learning platform together with the lecture videos and discussion forums on each of 
the topics. In total, 11 webinars were hosted, featuring experts from all of the project 
partners as well as strategic co-hosts from Oxford University Environmental Change 
Institute, CGIAR, Save Somali Women & Children, GFZ German Research Centre 
for Geosciences, University of Freiburg, FAO, UNCCD, and WMO. In aggregate, 
these webinars were attended by over 300 participants. Recordings of the webinars 
were made available on the Learning Platform where they were viewed over 800 
times. All project partners contributed to the webinars and electronic lectures. 

Table 2. Online courses provided by the GlobeDrought Learning Platform 

 

1) GlobeDrought Course 

 

2) GlobeDrought – 
Characterizing and 
assessing drought risk and 
drought impacts at the 
global and regional level 

 

3) Drought impacts I: 
Migration 

 

4) Drought impacts II: 
Gender / women 

 

5) Drought hazards I: 
Meteorological droughts 

 

6) Drought hazards II: 
Hydrological droughts 

 

7) Innovation: Total water 
storage change analysis 
from GRACE and 
hydrological modeling 

 

8) Detecting drought and 
vegetation health with 
remote sensing 

 

9) Understanding and 
assessing risk of drought 
impacts 

 

10) Drought impacts III: 
Agricultural systems 

 

11) Drought impacts IV: 
Food Security 

 

12) Droughts and the post-
2015 agenda 

https://elearning.grow-globedrought.net/
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Figure 44. Landing page of the GlobeDrought Learning Platform 

 



                                                                                        Final report –  References 

Seite 83 von 154 
 

References  
AFRA (Association for Rural Advancement) (1993). Drought relief and rural communities. Special 

Rep. No. 9. Pietermaritzburg, South Africa. 

Asadieh, B. and Krakauer, N.Y. (2017). Global change in streamflow extremes under climate change 
over the 21st century. Hydrol. Earth Syst. Sci. 21, 5863–5874.  

Barker, L. J., Hannaford, J., Parry, S., Smith, K. A., Tanguy, M., Prudhomme, C. (2019). Historic 
hydrological droughts 1891–2015: systematic characterisation for a diverse set of catchments 
across the UK, Hydrol. Earth Syst. Sci. 23, 4583–4602. 

Beccari, B. (2016). A Comparative Analysis of Disaster Risk, Vulnerability and Resilience Composite 
Indicators. PLoS Curr. 8, doi: 10.1371/currents.dis.453df025e34b682e9737f95070f9b970. 

Beck, H.E., Zimmermann, N.E., McVicar, T.R., Vergopolan, N., Berg, A., Wood, E.F. (2018). Present 
and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data 5, 
180214. 

BFAP (Bureau for Food and Agricultural Policy) (2016). Policy brief on 2015/2016 drought. 
http://www.nstf.org.za/wp-content/uploads/2016/06/Agri-SA-Drought-Report_CS4.pdf 
(accessed 23.11.2020). 

Bithell, M. and Brasington, J. (2009). Coupling agent-based models of subsistence farming with 
individual-based forest models and dynamic models of water distribution. Environmental 
Modelling & Software 24, 173–190. 

Boegh, E., Thorsen, M., Butts, M.B, Hansen, S., Christiansen, J.S, Abrahamsen, P. et al. (2004). 
Incorporating remote sensing data in physically based distributed agro-hydrological modelling. 
Journal of Hydrology 287, 279–299. 

BoM (2018). What is drought? http://www.bom.gov.au/climate/drought/ (accessed 23.06.2020). 

Cammalleri, C., Micale, F., Vogt, J. (2016). A novel soil moisture-based drought severity index (DSI) 
combining water deficit magnitude and frequency. Hydrol. Process. 30, 289–301. 

Cammalleri, C., Vogt, J., Salamon, P. (2017). Development of an operational low-flow index for 
hydrological drought monitoring over Europe. Hydrological Sciences Journal 62, 346-358.  

Carrão, H., Naumann, G., Barbosa, P. (2016). Mapping global patterns of drought risk: An empirical 
framework based on sub-national estimates of hazard, exposure and vulnerability. Global 
Environmental Change 39, 108–124.  

Chibba, M. and Luiz, J.M. (2011). Poverty, Inequality and Unemployment in South Africa: Context, 
Issues and the Way Forward: POVERTY, INEQUALITY AND UNEMPLOYMENT IN SOUTH AFRICA. 
Economic Papers: A journal of applied economics and policy 30, 307–315. 
https://doi.org/10.1111/j.1759-3441.2011.00129.x 

DAFF (2018). Abstract of agricultural statistics. South African Department of Agriculture, Forestry 
and Fisheries. http://www.daff.gov.za/Daffweb3/Portals/0/Statistics%20and%20Economic% 
20Analysis/Statistical%20Information/Abstract%202018.pdf  (Accessed 10.07.2020). 

DAFF (2019). Abstract of agricultural statistics. South African Department of Agriculture, Forestry 
and Fisheries. https://www.dalrrd.gov.za/Portals/0/Statistics%20and%20Economic%20Analysis/ 
Statistical%20Information/Abstract%202019.pdf (Accessed 05.01.2021). 

de Sherbinin, A., Bukvic, A., Rohat, G., Gall, M., McCusker, B., Preston, B., Apotsos, A., Fish, C., 
Kienberger, S., Muhonda, P., Wilhelmi, O., Macharia, D., Shubert, W., Sliuzas, R., Tomaszewski, B., 

http://www.nstf.org.za/wp-content/uploads/2016/06/Agri-SA-Drought-Report_CS4.pdf
http://www.bom.gov.au/climate/drought/
https://doi.org/10.1111/j.1759-3441.2011.00129.x
https://doi.org/10.1111/j.1759-3441.2011.00129.x
https://doi.org/10.1111/j.1759-3441.2011.00129.x


                                                                                        Final report –  References 

Seite 84 von 154 
 

Zhang, S., (2019). Climate vulnerability mapping: A systematic review and future prospects. 
WIREs Clim Change. https://doi.org/10.1002/wcc.600. 

DWA (2002). Governing Board Induction Manual. Department of Water Affairs. 

Enders CK. (2003). Using the Expectation Maximization Algorithm to Estimate Coefficient Alpha for 
Scales With Item-Level Missing Data. Psychol Meth. 8, 322–337. 

Eyshi Rezaei, E., Ghazaryan, G., González, J., Cornish, N., Dubovyk, O. Siebert, S. (2021). The use of 
remote sensing to derive maize sowing dates for large-scale crop yield simulations. Int J 
Biometeorol 65, 565–576.  

Eyshi Rezaei, E., González, J., Graw, V., Cornish, N., Siebert, S. (2018). Combination of crop models 
and remote sensing for simulation of drought impacts on crop yield. 
doi:10.13140/RG.2.2.17166.41280. 

Fanadzo, M., Chiduza, C., Mnkeni, P.N.S., Van der Stoep, L., Steven, J. (2010). Crop production 
management practices as a cause for low water productivity at Zanyokwe Irrigation Scheme. WSA 
36. https://doi.org/10.4314/wsa.v36i1.50904. 

FAO (2013). Drought. FAO Land and Water, https://www.fao.org/3/aq191e/aq191e.pdf (accessed 
05.08.2018) 

FAO (2016). AQUASTAT Country Profile –South Africa. Food and Agriculture Organization of the 
United Nations (FAO). Rome, Italy. 

FAO (2018). FAO: The impact of disasters and crises on agriculture and food security. 
http://www.fao.org/3/I8656EN/i8656en.pdf (accessed 01.07.2019). 

FAO (2019). GIEWS Update. Southern AfricaDry weather conditions reduce agricultural production 
prospects in 2019. Available at 
https://reliefweb.int/sites/reliefweb.int/files/resources/ca3071en_0.pdf (accessed 07.10.2020). 

FAO (2020a). Country profile, South Africa http://www.fao.org/3/x9751e/x9751e07.htm (accessed 
1.8.2020). 

FAO (2020b). Digital Agriculture Profile South Africa, http://www.fao.org/3/cb2506en/CB2506EN.pdf 
(accessed 1.2.2021). 

Field, A. (2013). Discovering statistics using IBM SPSS statistics (4th edition). London: Sage. 

Fleig, A. K., Tallaksen, L. M., Hisdal, H., Demuth, S. (2006). A global evaluation of streamflow drought 
characteristics, Hydrol. Earth Syst. Sci., 10, 535–552. 

Frischen, J., Meza, I., Rupp, D., Wietler, K., Hagenlocher, M. (2020). Drought risk to agricultural 
systems in Zimbabwe: A spatial analysis of hazard, exposure, and vulnerability. Sustainability 12, 
752. 

Gerdener, H., Engels, O., Kusche, J. (2020). A framework for deriving drought indicators from the 
Gravity Recovery and Climate Experiment (GRACE). Hydrology and Earth System Sciences 24, 
227–248. 

Ghazaryan G., Dubovyk O., Kussul N., Schellberg, J. (2020). Local Scale Agricultural Drought 
Monitoring with Satellite-based Multi-sensor Time-series. GIScience & Remote Sensing. 57, 511-
524. 

https://doi.org/10.1002/wcc.600
https://doi.org/10.1002/wcc.600
https://doi.org/10.4314/wsa.v36i1.50904
https://doi.org/10.4314/wsa.v36i1.50904
https://www.fao.org/3/aq191e/aq191e.pdf
http://www.fao.org/3/I8656EN/i8656en.pdf
https://reliefweb.int/sites/reliefweb.int/files/resources/ca3071en_0.pdf
http://www.fao.org/3/x9751e/x9751e07.htm


                                                                                        Final report –  References 

Seite 85 von 154 
 

Gidi, L. S. (2013). Rural households' livelihood strategies and opportunities with regard to farming: A 
case of Intsika Yethu Local Municipality.Universityof Fort Hare, Department of Agricultural 
Economics and Extension. Alice, South Africa. 

Hagenlocher, M., Renaud, F. G., Haas, S., Sebesvari, Z. (2018). Vulnerability and risk of deltaic social-
ecological systems exposed to multiple hazards, Sci. Total Environ. 631–632, 71–80. 

Hagenlocher, M.; Meza, I.; Anderson, C.C.; Min, A.; Renaud, F.G.; Walz, Y.; Siebert, S.; Sebesvari, Z. 
(2019). Drought vulnerability and risk assessments: State of the art, persistent gaps, and research 
agenda. Environ. Res. Lett. 14, 1–13.  

Hardy, M., Dziba, L., Kilian, W., Tolmay, J. (2011). Rainfed farming systems in South Africa. In: Tow, 
P., Cooper, I., Partridge, I., Birch, C. (Eds.), Rainfed Farming Systems. Springer, Netherlands, 
Dordrecht, 395–432 https://doi.org/10.1007/978-1-4020-9132-2_ 16. 

Harris, I., Jones, P., Osborn, T., Lister, D. (2014). Updated high-resolution grids of monthly climatic 
observations – the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623-642. 

Herbert, C. and Döll, P. (2021). Analyzing the informative value of alternative global-scale hazard 
indicators for monitoring drought risk for human water supply and river ecosystems (in 
preparation, submission to Nat. Hazards Earth Syst. Sci in November 2021). 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, 
C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., 
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., 
Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., 
Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., 
Vamborg, F., Villaume, S., Thépaut, J. (2020). The ERA5 global reanalysis. Q.J.R. Meteorol. Soc. 
146, 1999–2049.  

Hinkel, J. (2011). Indicators of Vulnerability and Adaptive Capacity. Towards a Clarification of the 
Science-Policy Interface. Global Environment Change 21, 198-208.  

Huang, L., He, B., Han, L., Liu, J., Wang, H., Chen, Z., (2017). A global examination of the response of 
ecosystem water-use efficiency to drought based on MODIS data. Science of The Total 
Environment 601–602, 1097–1107.  

IPCC (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change 
Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on 
Climate Change edCB Field et al (Cambridge: Cambridge University Press) 

IPCC (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. 
Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel 
on Climate Change. (V. R. Barros, C. B. Field, D. J. Dokken, M. D. Mastrandrea, K. J. Mach, T. E. 
Bilir, … L. L. White, Eds.). New York - Cambridge: Cambridge University Press. 

Jordaan, A.J., Sakulski, D.M., Muyambo, F. (2017a). Vulnerability, adaptation to and coping with 
drought: the case of commercial and subsistence rain fed farming in the Eastern Cape. Volume I. 
http://www.wrc.org.za/Knowledge%20Hub%20Documents/Research%20Reports/TT%20716-
17.pdf. (Accessed 05.09.2020) 

Jordaan, A.J., Sakulski, D.M., Muyambo, F. (2017b). Vulnerability, adaptation to and coping with 
drought: the case of commercial and subsistence rain fed farming in the Eastern Cape. Vol. II. 
http://www.wrc.org.za/Knowledge%20Hub%20Documents/Research%20Reports/TT%20716-2-
17.pdf (Accessed 29.10.2020) 

https://doi.org/10.1007/978-1-4020-9132-2_%2016
https://doi.org/10.1002/qj.3803
https://doi.org/10.1016/j.scitotenv.2017.05.084


                                                                                        Final report –  References 

Seite 86 von 154 
 

Landmann, T., Eidmann, D., Cornish, N., Franke, J., Siebert, S. (2019). Optimizing harmonics from 
Landsat time series data: The case of mapping rainfed and irrigated agriculture in Zimbabwe. 
Remote Sensing Letters 10, 1038-1046. 

Le Maitre, DC., Seyler, H., Holland, M., Smith-Adao, L., Nel, JL., Maherry, A., Witthüser, K. (2018). 
Identification, Delineation and Importance of the Strategic Water Source Areas of South Africa, 
Lesotho and Swaziland for Surface Water and Groundwater, Report No. TT 743/1/18, Pretoria: 
Water Research Commission. 

Machethe, C.L. (2004). Agriculture and poverty in South Africa: Can agriculture reduce poverty, in: 
Overcoming Underdevelopment Conference Held in Pretoria. Citeseer, p. 29. 

Mahlalela, P.T., Blamey, R.C., Hart, N.C.G., Reason, C.J.C. (2020). Drought in the Eastern Cape region 
of South Africa and trends in rainfall characteristics. Clim Dyn 55, 2743–2759. 

Makaudze, E.M. and Miranda, M.J. (2010). Catastrophic drought insurance based on the remotely 
sensed normalized difference vegetation index for smallholder farmers in Zimbabwe. Agrekon 49, 
418–432. 

McKee, T.B., Doesken, N.J., Kleist, J. (1993). The relationship of drought frequency and duration to 
time scale. In: Proceedings of the Eighth Conference on Applied Climatology, Anaheim, California, 
17–22 January 1993. Boston, American Meteorological Society, 179–184. 

Meza, I., Eyshi Rezaei, E., Siebert, S., Ghazaryan, G., Nouri, H., Dubovyk, O., Gerdener, H., Herbert, C., 
Kusche, J., Popat, E., Rhyner, J., Jordaan, A., Walz, Y., Hagenlocher, M. (2021). Drought risk for 
agricultural systems in South Africa: Drivers, spatial patterns, and implications for drought risk 
management. Science of The Total Environment 799, 149505. 

Meza, I., Hagenlocher, M., Naumann, G., Vogt, J., Frischen, J. (2019). Drought Vulnerability Indicators 
for Global-Scale Drought Risk Assessments. Publications Office of the European Union: 
Luxembourg. 

Meza, I., Siebert, S., Döll, P., Kusche, J., Herbert, C., Eyshi Rezaei, E., Nouri, H., Gerdener, H., Popat, 
E., Frischen, J., Naumann, G., Vogt, J.V., Walz, Y., Sebesvari, Z., Hagenlocher, M. (2020). Global-
scale drought risk assessment for agricultural systems. Nat. Hazards Earth Syst. Sci. 20, 695-712. 

Modarres, R. (2007). Streamflow drought time series forecasting, Stoch. Environ. Res. Ris. Assess. 21, 
223–233. 

Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Niemann, C., Peiris, T. A., Popat, E., Portmann, 
F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C. E., Trautmann, T., Döll, P. (2021). The 
global water resources and use model WaterGAP v2.2d: Model description and evaluation. 
Geoscientific Model Development 14, 1037–1079. 

Naumann, G., Barbosa, P., Garrote, L., Iglesias, A., Vogt, J. (2014). Exploring drought vulnerability in 
Africa: an indicator based analysis to be used in early warning systems. Hydrology and Earth 
System Sciences 18, 1591–1604. 

Ngaka, M. (2012). Drought preparedness, impact and response: A case of the Eastern Cape and Free 
State provinces of South Africa. Jàmbá: Journal of Disaster Risk Studies 4, 1-10. 

Niemeyer, S. (2008). New drought indices, in: López-Francos, A. (Ed.), Drought management: 
scientific and technological innovations. Zaragoza : CIHEAM, 267-274. 

OECD (2008). Handbook on Constructing Composite Indicators: Methodology and User Guide. 
https://doi.org/10.1787/9789264043466-en. 

https://doi.org/10.1787/9789264043466-en
https://doi.org/10.1787/9789264043466-en
https://doi.org/10.1787/9789264043466-en


                                                                                        Final report –  References 

Seite 87 von 154 
 

Peng, C.-Y. J., Harwell, M., Liou, S.-M., Ehman, L. H. (2006). Advances in missing data methods and 
implications for educational research. In: S. Sawilowsky (Ed.), Real data analysis. Greenwich, CT: 
Information Age, 31-37. 

Peng, L., Zeng, Z., Wei, Z., Chen, A., Wood, E.F., Sheffield, J. (2019). Determinants of the ratio of 
actual to potential evapotranspiration. Glob Change Biol 25, 1326–1343.  

Popat, E. and Döll, P. (2021): Soil moisture and streamflow deficit anomaly index: an approach to 
quantify drought hazards by combining deficit and anomaly. Nat. Hazards Earth Syst. Sci. 21, 
1337–1354. 

Portmann, F.T., Siebert, S., Döll, P. (2010). MIRCA2000-Global monthly irrigated and rainfed crop 
areas around the year 2000: A new high-resolution data set for agricultural and hydrological 
modeling. Global Biogeochem. Cycles 24, GB1011. 

Quiring, S. M. (2009). Developing Objective Operational Definitions for Monitoring Drought. Journal 
of Applied Meteorology and Climatology 48, 1217–1229. 

Rojas, O. (2018). Agricultural extreme drought assessment at global level using the FAO-Agricultural 
Stress Index System (ASIS). Weather and Climate Extremes. 

Roth, P. L., Switzer III, F. S., Switzer, D. M. (1999). Missing data in multiple item scales: A Monte Carlo 
analysis of missing data techniques. Organizational research methods 2, 211-232. 

Rother, H., Hall, R., London, L. (2008). Pesticide use among emerging farmers in South Africa: 
contributing factors and stakeholder perspectives. Development Southern Africa 25, 399-424. 

Running, S., Mu, Q., Zhao, M. (2017). MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 
Global 500m SIN Grid V006. https://doi.org/10.5067/MODIS/MOD16A2.006 

SACN (2016). State of South African Cities Report 2016. http://www.socr.co.za/wp-
content/uploads/2016/06/SoCR16-Main-Report-online.pdf (Accessed 01.02.2021). 

Sánchez, N., González-Zamora, Á., Martínez-Fernández, J., Piles, M., Pablos, M. (2018). Integrated 
remote sensing approach to global agricultural drought monitoring. Agricultural and Forest 
Meteorology 259, 141-153. 

Scheff, J. (2019). A unified wetting and drying theory. Nature Climate Change 9, 9-10. 

Schulze, R.E. (2016). On Observations, Climate Challenges, the South African Agriculture Sector and 
Considerations for an Adaptation Handbook. In: Schulze, R.E. (Ed.) Handbook for Farmers, 
Officials and Other Stakeholders on Adaptation to Climate Change in the Agriculture Sector within 
South Africa. Section A: Agriculture and Climate Change in South Africa: Setting the Scene, 
Chapter A1. 

Schumacher, M., Forootan, E., van Dijk, A. IJM., Müller Schmied, H., Crosbie, R. S., Kusche, J., Dӧll, P. 
(2018). Improving drought simulations within the Murray-Darling Basin by combined 
calibration/assimilation of GRACE data into the WaterGAP Global Hydrology Model. Remote 
Sensing of Environment 204, 212-228. 

Schwarz, M., Landmann, T., Cornish, N., Wetzel, K.-F., Siebert, S., Franke, J. (2020). A Spatially 
Transferable Drought Hazard and Drought Risk Modeling Approach Based on Remote Sensing 
Data. Remote Sensing 12, 237. 

Siebert, S., and Döll, P. (2010). Quantifying blue and green virtual water contents in global crop 
production as well as potential production losses without irrigation. Journal of Hydrology 384, 
198–217.  

https://doi.org/10.1111/gcb.14577
https://doi.org/10.5067/MODIS/MOD16A2.006
https://doi.org/10.5067/MODIS/MOD16A2.006
http://www.socr.co.za/wp-content/uploads/2016/06/SoCR16-Main-Report-online.pdf
http://www.socr.co.za/wp-content/uploads/2016/06/SoCR16-Main-Report-online.pdf
https://doi.org/10.1016/j.jhydrol.2009.07.031


                                                                                        Final report –  References 

Seite 88 von 154 
 

Sohoulande Djebou, D.C. (2017). Bridging drought and climate aridity. Journal of Arid Environments 
144, 170-180. 

Steinemann, A., Iacobellis, S.F., Cayan, D.R. (2015). Developing and Evaluating Drought Indicators for 
Decision-Making. J. Hydrometeorol. 16, 1793–1803. 

Thompson, M.W. (2019). South African National Land-Cover (SANLC) 2018. Department of 
Environmental Affairs of the Republic of South Africa, 
https://www.environment.gov.za/projectsprogrammes/egis_landcover_datasets (accessed 
07.08.2020). 

Tian, L., Yuan, S., Quiring, S.M. (2018). Evaluation of six indices for monitoring agricultural drought in 
the south-central United States. Agricultural and Forest Meteorology 249, 107-119. 

Tijdeman, E., Stahl, K., Tallaksen, L. M. (2020). Drought Characteristics Derived Based on the 
Standardized Streamflow Index: A Large Sample Comparison for Parametric and Nonparametric 
Methods. Water Resour. Res. 56, e2019WR026315. 

Trenberth, K. E., Dai, A., Van der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., Sheffield, J. 
(2014). Global warming and changes in drought. Nature Climate Change 4, 17–22. 

UNDRR (2019). Global Assessment Report on Disaster Risk Reduction 2019, Chapter 6: Special 
Section on Drought. https://gar.undrr.org/report-2019, UN, New York 

Unganai, L.S., Kogan, F.N. (1998). Drought Monitoring and Corn Yield Estimation in Southern Africa 
from AVHRR Data. Remote Sensing of Environment 63, 219–232.   

UN Zimbabwe (2010). Country Analysis Report for Zimbabwe. 
http://www.zw.one.un.org/sites/default/files/Country%20Analysis%20Report%20for%20Zimbab
we%202010.pdf (accessed on 21.01.2020) 

 Unganai, L.S. and Kogan, F.N. (1998). Drought Monitoring and Corn Yield Estimation in Southern 
Africa from AVHRR Data. Remote Sensing of Environment 63, 219-232. 

van Loon, A. F., Stahl, K., Di Baldassarre, G., Clark, J., Rangecroft, S., Wanders, N., Gleeson, T., van 
Dijk, A. I. J. M., Tallaksen, L. M., Hannaford, J., Uijlenhoet, R., Teuling, A. J., Hannah, D. M., 
Sheffield, J., Svoboda, M., Verbeiren, B., Wagener, T., Van lanen, H. A. J. (2016). Drought in a 
human-modified world: reframing drought definitions, understanding, and analysis approaches, 
Hydrol. Earth Syst. Sci. 20, 3631–3650. 

van Loon, A.F. (2015). Hydrological drought explained, WIREs Water 2, 359-392, 
https://doi.org/10.1002/wat2.1085. 

VERBI Software. (2019). MAXQDA 2020, computer program, VERBI Software, Berlin. 

Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I. (2010) A Multiscalar Drought Index Sensitive 
to Global Warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate 
23, 1696-1718. 

Viña, A., Gitelson, A.A., Rundquist, D.C., Keydan, G.P., Leavitt, B.,  Schepers, J. (2004). Monitoring 
Maize (Zea mays L.) Phenology with Remote Sensing. Agron. J. 96, 1139–1147. 

Waldner, F., Hansen, M.C., Potapov, P.V., Löw, F., Newby, T., Ferreira, S., Defourny, P. (2017). 
National-scale cropland mapping based on spectral-temporal features and outdated land cover 
information. PLoS ONE 12, e0181911. 

Walz, Y., Dall, K., Graw, V., León, J., Haas, S., Kussul, N., Jordaan, A. (2018). Understanding and 
reducing agricultural drought risk: Examples from South Africa and Ukraine. 

https://www.environment.gov.za/projectsprogrammes/egis_landcover_datasets
https://doi.org/10.1016/S0034-4257(97)00132-6


                                                                                        Final report –  References 

Seite 89 von 154 
 

Walz, Y., Min, A., Dall, K., Duguru, M., Villagran de Leon, J.-C., Graw, V., Dubovyk, O., Sebesvari, Z., 
Jordaan, A., Post, J. (2020). Monitoring progress of the Sendai Framework using a geospatial 
model: The example of people affected by agricultural droughts in Eastern Cape, South Africa. 
Progress in Disaster Science 5, 100062. https://doi.org/10.1016/j.pdisas.2019.100062. 

Wan, W., Zhao, J., Popat, E., Herbert, C., Döll, P. (2020). Analyzing and Monitoring the Impact of 
Streamflow Drought on Hydroelectricity Production: A Global-Scale Study (in review in Water 
Resources Research). https://www.essoar.org/doi/10.1002/essoar.10503337.1 (accessed 
18.11.2020). 

Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and Viterbo, P. (2014). The WFDEI 
meteorological forcing data set: WATCH forcing data methodology applied to ERAInterim 
reanalysis data, Water Resour. Res. 50, 7505–7514. 

World Bank, (2019). Assessing Drought Hazard and Risk: Principles and Implementation Guidance. 
Washington, DC: World Bank. 

World Bank. (2020). Global - Dams Database | Data Catalog [WWW Document]. https:// 
datacatalog.worldbank.org/dataset/global-dams-database. (Accessed 01.12.2021). 

WWF (2018). Agriculture: Facts and Trends, South Africa [online]. World Wide Fund. 
http://awsassets.wwf.org.za/downloads/facts_brochure_mockup_04_b.pdf (Accessed 
06.07.2020). 

Xiao, W., Sun, Z., Wang, Q. et Yang, Y. (2013). Evaluating MODIS phenology product for rotating 
croplands through ground observations. Journal of Applied Remote Sensing 7, 73562. 

Yevjevich, V. (1967). An objective approach to definitions and investigations of continental 
hydrological droughts. Colorado State University, Fort Collins, Hydrology Paper  

Yu, L., and Ramaswamy, S. (2011). Examining the Relationships between Software Coupling and 
Software Performance: A Cross-platform Experiment. J. Comput. Inf. Technol. 19, 1-10. 

Zargar, A., Sadiq, R., Naser, B., Khan, F.I. (2011). A review of drought indices. Environmental Reviews 
19, 333-349. 

Zhao, H., Xu, Z., Zhao, J., Huang, W. (2017). A drought rarity and evapotranspiration-based index as a 
suitable agricultural drought indicator. Ecological Indicators 82, 530-538.  

https://doi.org/10.1016/j.pdisas.2019.100062
https://doi.org/10.1016/j.pdisas.2019.100062
http://awsassets.wwf.org.za/downloads/facts_brochure_mockup_04_b.pdf


        Final report –  Appendix A1 - Time series of global drought hazard 1981-2018 

Seite 90 von 154 
 

Appendix 

Appendix A1 - Time series of global drought hazard 1981-2018  

1. Rainfed agricultural systems   

 

 

 

 



        Final report –  Appendix A1 - Time series of global drought hazard 1981-2018 

Seite 91 von 154 
 

 

 

 

 

 

 

 

 



        Final report –  Appendix A1 - Time series of global drought hazard 1981-2018 

Seite 92 von 154 
 

 

 

 

 

 

 

 

 



        Final report –  Appendix A1 - Time series of global drought hazard 1981-2018 

Seite 93 von 154 
 

 

 

 

 

 

 

 

 



        Final report –  Appendix A1 - Time series of global drought hazard 1981-2018 

Seite 94 von 154 
 

 

 

 

 

 

 

 

 



        Final report –  Appendix A1 - Time series of global drought hazard 1981-2018 

Seite 95 von 154 
 

 

 

 

 

 

 

 

 



        Final report –  Appendix A1 - Time series of global drought hazard 1981-2018 

Seite 96 von 154 
 

 

 

 

 

 

 

 

 



        Final report –  Appendix A1 - Time series of global drought hazard 1981-2018 

Seite 97 von 154 
 

 

 

 

 

 

 

 

 



        Final report –  Appendix A1 - Time series of global drought hazard 1981-2018 

Seite 98 von 154 
 

 

 

 

 

 

 

 

 



        Final report –  Appendix A1 - Time series of global drought hazard 1981-2018 

Seite 99 von 154 
 

 

 

 

 

 

 

 

 



        Final report –  Appendix A1 - Time series of global drought hazard 1981-2018 

Seite 100 von 154 
 

 

 

 

 

 

 

 

 



        Final report –  Appendix A1 - Time series of global drought hazard 1981-2018 

Seite 101 von 154 
 

 

 

 

 

 

 

 

 



        Final report –  Appendix A1 - Time series of global drought hazard 1981-2018 

Seite 102 von 154 
 

 

 

 

 

 

 

 

 



        Final report –  Appendix A1 - Time series of global drought hazard 1981-2018 

Seite 103 von 154 
 

 

 

 

 

 

 

 

 



        Final report –  Appendix A1 - Time series of global drought hazard 1981-2018 

Seite 104 von 154 
 

 

 

 

 

 

 

 

 



        Final report –  Appendix A1 - Time series of global drought hazard 1981-2018 

Seite 105 von 154 
 

 

 

 

 

 

 

 

 



        Final report –  Appendix A1 - Time series of global drought hazard 1981-2018 

Seite 106 von 154 
 

 

 

 

 

 

 

 

 



        Final report –  Appendix A1 - Time series of global drought hazard 1981-2018 

Seite 107 von 154 
 

 

 

 

 

 

 

 

 



        Final report –  Appendix A1 - Time series of global drought hazard 1981-2018 

Seite 108 von 154 
 

 

 

 

 

 

 

  



        Final report –  Appendix A1 - Time series of global drought hazard 1981-2018 

Seite 109 von 154 
 

 

2. Irrigated agricultural systems  
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Appendix A2 - Time series of global drought risk at country level (2000-2018) 

1. Rainfed agricultural systems 

2001 – Drought risk of rainfed agricultural systems 

2002 – Drought risk of rainfed agricultural systems 
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2005 – Drought risk of rainfed agricultural systems 

2006 – Drought risk of rainfed agricultural systems 
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2007 – Drought risk of rainfed agricultural systems 

2008 – Drought risk of rainfed agricultural systems 
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2009 – Drought risk of rainfed agricultural systems 

2010 – Drought risk of rainfed agricultural systems 

2009 – Drought risk of rainfed agricultural systems 

2010 – Drought risk of rainfed agricultural systems 
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2011 – Drought risk of rainfed agricultural systems 

2012 – Drought risk of rainfed agricultural systems 
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2013 – Drought risk of rainfed agricultural systems 

2014 – Drought risk of rainfed agricultural systems 
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2015 – Drought risk of rainfed agricultural systems 

2016 – Drought risk of rainfed agricultural systems 
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2017 – Drought risk of rainfed agricultural systems 

2018 – Drought risk of rainfed agricultural systems 
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2. Irrigated agricultural systems 

2001 – Drought risk of irrigated agricultural systems 

2002 – Drought risk of irrigated agricultural systems 
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2015 – Drought risk of irrigated agricultural systems 

2016 – Drought risk of irrigated agricultural systems 
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2017 – Drought risk of irrigated agricultural systems 

2018 – Drought risk of irrigated agricultural systems 
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Appendix A3 - Drought impact analysis: regional anomalies in domestic food 
supply, net trade and production of cereals, oil crops and pulses 

For three crop categories of cereals, oil crops and pulses, changes relative to the 

five years mean of three elements of domestic supply quantity, net trade and crop 

production were extracted from FAOSTAT for selected counries or regions for the 

years around their most extreme drought events (drought year, two years before and 

two years after). 
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Northern America (2002) 
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Australia (2006) 

 

Southern America (2009) 
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Eastern Europe (2010) 

 

Eastern Africa (2012) 
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                                             Final report –  Appendix A3: Drought impact analysis 

Seite 152 von 154 
 

Southern Africa (2015) 

 

Western Europe (2018)* 

 

* Data for year 2019 and 2020 not yet available 
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